ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Средства и технология диагностирования элементов системы электрооборудования. Диагностика системы электрооборудования

Общие сведения . При проведении номерных и ежесменных работ по техническому обслуживанию выполняют строго определенный перечень операции, указанный ниже.

Ежесменное техническое обслуживание . Оно заключается в проверке работоспособности приборов освещения и сигнализации (контроль ближнего и дальнего света фар, работы подфарников, указателей поворота, стоп-сигнала, стеклоочистителей).

Первое техническое обслуживание . Во время ТО-1 дополнительно к операциям ЕТО проверяют уровень электролита в батарее аккумуляторов и при необходимости доливают дистиллированную воду, очищают поверхность аккумулятора, проводят зачистку и смазку клемм и наконечников проводов.

Второе техническое обслуживание . При ТО-2 дополнительно к операциям ЕТО и ТО-1 контролируют плотность электролита в батарее аккумуляторов и при необходимости подзаряжают ее; прочищают дренажные и вентиляционные отверстия генератора; проверяют и подтягивают клеммовые соединения и крепления агрегатов и приборов электрооборудования.

Третье техническое обслуживание . Во время ТО-3 дополнительно контролируют и при необходимости регулируют реле-регулятор, состояние стартера и устраняют его неисправности, проверяют показания контрольных приборов, состояние изоляции электропроводки. При обнаружении неисправностей генератора, стартера, реле-регулятора или контрольных приборов рекомендуется их снять и проверить на специальном стенде, устранить неисправности и отрегулировать.

Таблица 18: Плотность электролита

Для проверки приборов электрооборудования применяют переносной вольтамперметр КИ-1093. Может быть использован также комбинированный прибор, например 43102, с помощью которого определяют силу тока, напряжение и сопротивление в цепях постоянного и переменного тока, угол замкнутого состояния контактов прерывателя и частоту вращения коленчатого вала, также пригодится гарнитура Гидро-Вектор . Аккумуляторную батарею проверяют нагрузочной вилкой ЛЭ-2, плотность электролита контролируют с помощью денсиметра (ГОСТ 18481-81) или плотномера КИ-13951.

Проверка и обслуживание аккумуляторной батареи . Батарею очищают от пыли и грязи, протирают поверхность и смотрят, нет ли трещин на банке и мастике. Зачищают клеммы и клеммовые провода.

Уровень электролита контролируют стеклянной трубкой, он должен быть на высоте 10 … 15 мм (но не выше 15 мм) над поверхностью защитной решетки. Если уровень ниже решетки, необходимо долить дистиллированную воду.

Проверяют плотность электролита, которая должна соответствовать техническим требованиям (табл. 18). Допускается снижение емкости зимой на 25%, летом - на 50%. Разница в плотности электролита между аккумуляторами одной батареи может быть не более 0,02 г/см3. Если плотность электролита ниже допускаемого значения, батарею необходимо подзарядить.

Проверка генераторов и реле-регуляторов . Наиболее часто встречаются следующие неисправности генераторов: замыкание обмоток на массу, межвитковое замыкание и обрыв в цепи, а также механические износы подшипников, разрушение обмотки якоря, износ щеток и пластин коллектора (у генераторов постоянного тока).

При проверке генераторов непосредственно на машине с помощью прибора КИ-1093 их подсоединяют по схеме, указанной на рисунке 18.

Генераторы переменного тока . Их проверяют (рис. 18, а) под нагрузкой, которую задают с помощью реостата прибора КИ-1093. Ток нагрузки должен быть 70 А для генераторов типа Г287 и 23,5 А для генераторов типа Г306. При указанной^ нагрузке измеряют напряжение на номинальной частоте вращения коленчатого вала двигателя. Оно должно быть в пределах 12,5 … 13,2 В.

Контактно-транзисторный реле-регулятор . Для проверки РР385-Б задают ток нагрузки 20 А и дополнительно включают все приборы освещения. При номинальной частоте вращения коленчатого вала напряжение должно быть 13,5 … 14,3 В летом и 14,3 … 15,5 В зимой. Регулятор РР362-Б проверяют при токе нагрузки 13 … 15 А, напряжение должно быть 13,2 … 14 В летом и 14 … 15,2 В зимой.

Генераторы постоянного тока . Их контролируют (рис. 18, б) при работе в режиме электродвигателя. Для этого снимают приводной ремень и включают генератор с помощью включателя массы на 3 … 5 мин. Потребляемый ток должен быть не более 6 А, и якорь вращается равномерно.

Вибрационный реле-регулятор . Проверку начинают с контроля реле напряжения. Схема проверки показана на рисунке 19, а. Двигатель должен работать на средней частоте вращения коленчатого вала. Нагрузочным реостатом прибора создают ток нагрузки 6 … 7 А и измеряют напряжение. Оно должно быть 13,7 … 14 В для позиции «Лето» и 14,2 … 14,5 В для позиции «Зима».

Для проверки ограничителя тока при средней частоте вращения коленчатого вала увеличивают реостатом ток нагрузки до тех пор, пока не остановится стрелка амперметра. Показания амперметра при этом соответствуют току, ограничиваемому реле. Максимальный ток должен быть 12 … 14 А для реле РР315-Б и 14 … 16 А для РР315-Д.

Реле обратного тока . Его проверяют в соответствии со схемой (рис. 19, б). Устанавливают минимальную частоту вращения коленчатого вала двигателя так, чтобы стрелка амперметра была в нулевом положении, затем повышают частоту вращения. В момент включения реле обратного тока резко уменьшаются показания вольтметра. Напряжение, предшествующее скачку стрелки вольтметра, соответствует напряжению включения реле обратного тока. Оно должно быть 11 … 12 В.

Для проверки обратного тока необходимо составить схему включения в соответствии с рисунком 19, в. Прибор подключают к аккумуляторной батарее. Устанавливают номинальную частоту вращения коленчатого вала двигателя и затем медлённо понижают ее. Стрелка амперметра перейдет нулевое положение и будет показывать отрицательный ток. Необходимо зафиксировать максимальное отрицательное отклонение стрелки, которое и соответствует обратному току в момент отключения аккумуляторной батареи от генератора. Значение обратного тока должно быть 0,5 … 6 А.

Регулирование всех приборов и агрегатов системы электрооборудования рекомендуется выполнять на специальных стендах.

Проверка и обслуживание приборов системы зажигания . Анализ надежности карбюраторных автомобильных двигателей показывает, что 25 … 30% их отказов происходит из-за неисправностей в системе зажигания. Наиболее частые признаки неисправной работы приборов системы зажигания: работа двигателя с перебоями, ухудшение приемистости при переходе с малой на среднюю частоту вращения, детонационные стуки, снижение мощности, полное отсутствие искрообразования, трудный пуск двигателя. Необходимо отметить, что примерно те же признаки (за исключением отсутствия искрообразования) возникают при неисправной работе системы питания.

Поиск неисправности в системе зажигания необходимо начинать с проверки искровых свечей зажигания. При перебоях в работе двигателя неработающий цилиндр определяют отключением свечи (замыканием провода на массу) на малой частоте вращения. Определив неработающий цилиндр, заменяют свечу на заведомо исправную, чтобы убедиться в ее исправности.

После проверки искровых свечей зажигания контролируют состояние прерывателя. Наиболее частые дефекты - окисление, износ, нарушение зазора контактов прерывателя и замыкание подвижного контакта на массу. Причиной перебоев в работе двигателя может быть также неисправность конденсатора. Конденсатор влияет на интенсивность искрообразования и окисление контактов прерывателя.

Приемистость двигателя ухудшается из-за нарушения работы центробежного и вакуумного автоматов опережения зажигания и неправильной начальной установки угла опережения зажигания. Раннее зажигание также может стать причиной детонационных стуков и трудного запуска двигателя, позднее зажигание приводит к ухудшению приемистости и заметному снижению мощности.

Отсутствие искрообразования происходит из-за разрывов в цепях низкого или высокого напряжения, замыкания на массу подвижного контакта прерывателя и неисправностей индукционной катушки (при условии, что есть напряжение на клеммах первичной обмотки катушки).

Приборы зажигания проверяют с помощью вольтамперметра КИ-1093, комбинированных приборов 43102, Ц4328, К301, Э214, Э213. На станциях диагностики применяют мотор-тестер КИ-5524.

Искровые свечи зажигания . При техническом обслуживании свечи очищают от нагара и регулируют зазор между электродами.

Прерыватель-распределитель . В нем зачищают контакты прерывателя, регулируют зазор между ними (контролируют по углу замкнутого состояния контактов), зачищают торец токопроводящей пластины ротора и контакты в крышке распределителя, смазывают точки смазки. Проверяют угол опережения зажигания и при необходимости регулируют его.

Контактно-транзисторная система зажигания . Вследствие малого тока, проходящего через контакты прерывателя, отсутствует искрение между ними, они почти не подвергаются эрозии и окислению. При техническом обслуживании протирают контакты прерывателя тканью, смоченной в бензине, проверяют и регулируют зазор между ними, смазывают фильц кулачка. При отказе транзисторного коммутатора его заменяют.

Проверка и обслуживание стартера . Неисправности стартера - обрывы и короткие замыкания в цепи, плохой контакт, обгорание или выработка коллектора, загрязнение или износ щеток, обрыв или короткое замыкание в обмотках тягового реле и реле включения, износ муфты свободного хода, заклинивание или поломка зубьев шестерен. В случае этих неисправностей во время включения стартера коленчатый вал не вращается или же проворачивается незначительно с шумом и стуками, не обеспечивая пуск двигателя.

Во время ТО подтягивают крепление контактов внешней цепи, очищают их от загрязнений, зачищают контакты включения стартера, подтягивают крепления. Неисправный стартер проверяют на контрольно-испытательном стенде Э211 и 532М.

Приборы освещения . Неисправность фар обычно заключается в нарушении их положения, отчего зависит направленность светового потока. Освещение дороги должно быть на расстоянии 30 м при ближнем свете и 100 м при дальнем. При ТО регулируют фары с помощью специальных оптических приборов, настенного или переносного экрана. Применяют прибор К-303 для контроля и регулировки положения фар.

При проверке с помощью экрана машину устанавливают перед ним на горизонтальной площадке в определенном расстоянии и регулируют положение фар так, чтобы высота горизонтальной оси обоих пятен света и расстояние между их вертикальными осями соответствовало техническим требованиям.

Диагноз в переводе с греческого означает «распознавание», «определение». - это теория, методы и средства, с помощью которых делается заключение о техническом состоянии объекта.

Чтобы определить техническое состояние электрооборудования, необходимо, с одной стороны, установить, что и каким способом следует контролировать, а с другой стороны - решить, какие средства для этого потребуются.

В данной проблеме просматривается две группы вопросов:

    анализ диагностируемого оборудования и выбор методов контроля для установления его действительного технического состояния,

    построение технических средств для контроля состояния оборудования и условий эксплуатации.

Итак, для проведения диагноза нужно иметь объект и средства диагноза .

Объектом диагноза может быть любое устройство, если оно по крайней мере может находиться в двух взаимно исключаемых состояниях- работоспособном и неработоспособном, и в нем можно выделить элементы, каждый из которых также характеризуется различными состояниями. На практике реальный объект при исследованиях заменяют диагностической моделью.

Воздействия, специально создаваемые для целей диагноза технического состояния и подаваемые на объект диагноза от средств диагноза, называются тестовыми воздействиями. Различают контролирующие и диагностирующие тесты. Контролирующим тестом называется совокупность наборов входных воздействий, позволяющих провести проверку работоспособности объекта. Диагностическим тестом называется совокупность наборов входных воздействий, позволяющих осуществить поиск неисправности, т. е. определить отказ элемента или неисправный узел.


Центральной задачей диагностики является поиск неисправных элементов, т. е. определение места, а возможно, и причины появления отказа. Для электрооборудования такая задача возникает на различных этапах эксплуатации. В силу этого, диагностика является эффективным средством повышения надежности электрооборудования в процессе его эксплуатации.

Процесс поиска неисправностей в установке обычно включает в себя следующие этапы:

    логический анализ имеющихся внешних признаков, составление перечня неисправностей, которые способны привести к отказу,

    выбор оптимального варианта проверок,

    переход к осуществлению поиска неисправного узла.

Рассмотрим простейший пример. Электродвигатель вместе с исполнительным механизмом не вращается при подаче на него напряжения. Возможные причины - сгорела обмотка, двигатель заклинило. Следовательно, нужно проверять обмотку статора и подшипники.

С чего начать диагностирование? Проще с обмотки статора. С нее и начинаются проверки. Затем уже, в случае необходимости, осуществляется разборка двигателя и оценка технического состояния подшипников.

Каждый конкретный поиск носит характер логического исследования, для которого необходимы знания, опыт, интуиция обслуживающего электрооборудование персонала. При этом помимо знания устройства оборудования, признаков нормального функционирования, возможных причин выхода из строя необходимо владеть методами поиска неисправностей и уметь правильно выбрать требуемый из них.

Различают два основных вида поиска отказавших элементов - последовательный и комбинационный.

При использовании первого метода проверки в аппаратуре выполняются в некотором порядке. Результат каждой проверки сразу же анализируется, и если отказавший элемент не определен, то поиск продолжается. Порядок выполнения операций диагноза может быть строго фиксированным или зависеть от результатов предыдущих опытов. Поэтому программы, реализующие этот метод, можно подразделить на условные, в которых каждая последующая проверка начинается в зависимости от исхода предыдущей, и безусловные, в которых проверки выполняются в некотором заранее фиксированном порядке. При участии человека всегда используются гибкие алгоритмы, чтобы избежать лишних проверок.

При использовании комбинационного метода состояние объекта определяется путем выполнения заданного числа проверок, порядок выполнения которых безразличен. Отказавшие элементы выявляются после проведения всех испытаний путем анализа полученных результатов. Для этого метода характерны такие ситуации, когда не все полученные результаты необходимы для определения состояния объекта.

В качестве критерия для сравнения различных систем поиска неисправностей обычно используется среднее время обнаружения отказа. Могут быть применены и другие показатели - количество проверок, средняя скорость получения информации и пр.

На практике помимо рассматриваемых нередко используется эвристический метод диагноза . Строгие алгоритмы здесь не применяются. Выдвигается определенная гипотеза о предполагаемом месте отказа. Осуществляется поиск. По результатам его гипотеза уточняется. Поиск продолжается до определения неисправного узла. Зачастую такой подход использует радиомастер при ремонте радиоаппаратуры.

Помимо поиска отказавших элементов понятие технической диагностики охватывает также процессы контроля технического состояния электрооборудования в условиях применения его по назначению. При этом лицо, осуществляющее эксплуатацию электрооборудования, определяет соответствие выходных параметров агрегатов паспортным данным или ТУ, выявляет степень износа, необходимость регулировок, потребность в замене отдельных элементов, уточняет сроки проведения профилактических мероприятий и ремонтов.

Применение диагностирования позволяет предупредить отказы электрооборудования, определить его пригодность для дальнейшей эксплуатации, обоснованно установить сроки и объемы ремонтных работ. Диагностирование целесообразно проводить как при применении существующей системы планово-предупредительных ремонтов и технических обслуживании электрооборудования (система ППР), так и в случае перехода к новой, более совершенной форме эксплуатации, когда ремонтные работы выполняются не через определенные заранее установленные сроки, а по результатам диагноза, если сделано заключение о том, что дальнейшая эксплуатация может привести к отказам или становится экономически нецелесообразной.

При применении новой формы обслуживания электрооборудования в сельском хозяйстве следует проводить:

    техническое обслуживание согласно графикам,

    плановое диагностирование через определенные периоды или наработки,

    текущий или капитальный ремонты по данным оценки технического состояния.

При техническом обслуживании диагностирование служит для определения работоспособности оборудования, проверки стабильности регулировок, выявления необходимости ремонта или замены отдельных узлов и деталей. При этом диагностируются так называемые обобщенные параметры, которые несут максимум информации о состоянии электрооборудования - сопротивление изоляции, температура отдельных узлов и др.

При плановых проверках контролируются параметры, характеризующие техническое состояние агрегата и позволяющие определить остаточный ресурс узлов и деталей, ограничивающих возможность дальнейшей эксплуатации оборудования.

Диагностирование, проводимое при текущем ремонте на пунктах технического обслуживания и текущего ремонта или на месте установки электрооборудования, позволяет в первую очередь оценить состояние обмоток. Остаточный ресурс обмоток должен быть больше периода между текущими ремонтами, иначе оборудование подлежит капитальному ремонту. Помимо обмоток выполняется оценка состояния подшипников, контактов и других узлов.

В случае проведения технического обслуживания и планового диагностирования электрооборудование не разбирают. При необходимости снимают защитные сетки вентиляционных окон, крышки выводов и другие быстросъемные детали, обеспечивающие доступ к узлам. Особую роль в данной ситуации играет внешний осмотр, позволяющий определить повреждения выводов, корпуса, установить наличие перегрева обмоток по потемнению изоляции, проверить состояние контактов.

Основные параметры диагностирования

В качестве диагностических параметров следует выбирать характеристики электрооборудования, критичные к ресурсу работы отдельных узлов и элементов. Процесс износа электрооборудования зависит от условий эксплуатации. Решающее значение принадлежит режимам работы и условиям окружающей среды.

Основными параметрами, проверяемыми при оценке технического состояния электрооборудования, являются:

    для электродвигателей - температура обмотки (определяет срок службы), амплитудно-фазовая характеристика обмотки (позволяет оценить состояние витковой изоляции), температура подшипникового узла и зазор в подшипниках (указывают на работоспособность подшипников). Кроме этого для электродвигателей, эксплуатируемых в сырых и особо сырых помещениях, дополнительно следует замерять сопротивление изоляции (позволяет прогнозировать срок службы электродвигателя),

    для пускорегулирующей и защитной аппаратуры - сопротивление петли «фаза-нуль» (контроль соответствия условиям защиты), защитные характеристики тепловых реле, сопротивление контактных переходов,

    для осветительных установок - температура, относительная влажность, напряжение, частота включения.

Помимо основных может быть оценен и ряд вспомогательных параметров, дающих более полное представление о состоянии диагностируемого объекта.

Примерный порядок технического диагностирования электроустановок потребителей. Критерии точности и достоверности практически не отличаются от аналогичных критериев оценки приборов и методов используемых при проведении любых измерений а технико-экономические критерии включают в себя объединенные материальные и трудовые затраты продолжительность и периодичность диагностирования. При проектировании диагностических систем необходимо разработать алгоритм диагностирования описывающий перечень порядок проведения элементарных проверок оборудования...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ЭКСПЛУАТАЦИЯ И РЕМОНТ ЭНЕРГОБОРУДОВАНИЯ (5 курс)

ЛЕКЦИЯ №11

Техническая диагностика электрооборудования в процессе эксплуатации.

3. Примерный порядок технического диагностирования электроустановок потребителей.

1. Основные понятия и определения.

Техническая диагностика - наука о распознавании состояния технической системы, включающая широкий круг проблем связанных с получением и оценкой диагностической информации.

Основной задачей технической диагностики является распознавание состояния технической системы в условиях ограниченной информации.

Иногда техническую диагностику называют безразборной, т. е. диагностикой, осуществляемой без разборки изделия.

При эксплуатации электрооборудования диагностирование применяется для определения необходимости и объема ремонта, сроков замены сменных деталей и узлов, стабильности регулировок, а также при поиске причин отказов.

Целью системы технической диагностики любого оборудования является определение фактического технического состояния оборудования для организации его правильной эксплуатации, технического обслуживания и ремонта, а также выявление возможных неисправностей на раннем этапе их развития.

Все виды затрат на функционирование системы технической диагностики должны быть минимизированы.

Плановая техническая диагностика проводится в соответствии с действующими нормами и правилами. Кроме того, она позволяет судить о возможности дальнейшей эксплуатации оборудования, когда оно отработало нормативный срок службы.

Внеплановая техническая диагностика оборудования проводится в случае обнаружения нарушений его технического состояния.

Если диагностика проводится во время работы оборудования, она называется функциональной.

В России и в других странах разработаны диагностические системы, основанные на различных физических и математических моделях, являющихся ноу-хау производителя. Поэтому детальное описание алгоритма и математического обеспечения таких систем в литературе, как правило, отсутствует.

В России созданием таких систем занимаются ведущие заводы - производители электрических машин и трансформаторов. Совместно с ведущими НИИ (ВНИИЭ, ВНИИЭлектромаш, ВНИЭМ, ВЭИ и др.). За рубежом работы по созданию диагностических систем координируются научно-исследовательским институтом электроэнергетики EPRI (США).

2. Состав и функционирование диагностических систем

Техническое диагностирование в соответствии с ГОСТ 27518 - 87 «Диагностирование изделий. Общие требования» должно обеспечивать решение следующих задач:

Определение технического состояния оборудования;

Поиск места отказа или неисправности;

Прогнозирование технического состояния оборудования.

Для работы системы диагностики необходимо установить е критерии и показатели, а оборудование должно быть доступны для проведения необходимых измерений и испытаний.

Основными критериями системы диагностики являются точное и достоверность диагностики, а также технико-экономические критерии. Критерии точности и достоверности практически не отличаются от аналогичных критериев оценки приборов и методов используемых при проведении любых измерений, а технико-экономические критерии включают в себя объединенные материальные и трудовые затраты, продолжительность и периодичность диагностирования.

В качестве показателей системы диагностики в зависимости решаемой задачи используют либо наиболее информативные параметры оборудования, позволяющие определить или прогнозировать его техническое состояние, либо глубину поиска места отказа или неисправности.

Выбранные диагностические параметры должны удовлетворять требованиям полноты, информативности и доступности их измерения при наименьших затратах времени и средств.

При выборе диагностических параметров приоритет отдается тем, которые удовлетворяют требованиям определения истинного технического состояния данного оборудования в реальных условиях эксплуатации. На практике обычно используют не один, а несколько параметров одновременно.

При проектировании диагностических систем необходимо разработать алгоритм диагностирования, описывающий перечень порядок проведения элементарных проверок оборудования, состав признаков (параметров), характеризующих реакцию объекта на соответствующее воздействие, и правила анализа и принятия решения по полученной информации.

В состав диагностической информации могут входить паспортные данные оборудования;

Данные о его техническом состояния на начальный момент эксплуатации;

Данные о текущем техническом состоянии с результатами измерений и обследований;

Результаты расчетов, оценок, предварительных прогнозов и заключений;

Обобщенные данные по парку оборудования.

Эта информация вводится в базу данных системы диагностики и может передаваться для хранения.

Средства технической диагностики должны обеспечивать надежное измерение или контроль диагностических параметров конкретных условиях эксплуатации оборудования. Надзор за средствами технической диагностики обычно осуществляется метрологической службой предприятия.

Различают четыре возможных состояния оборудования (рис. 1)

Исправное (отсутствуют любые повреждения),

Работоспособное (имеющиеся повреждения не мешают работе оборудования в данный момент времени),

Неработоспособное (оборудование выводится из эксплуатации, но после соответствующего технического обслуживания может работать в одном из предыдущих состояний),

Предельное (на этом этапе принимается решение о возможности дальнейшей эксплуатации оборудования после ремонта, либо о его списании).

Этапы функционирования системы технической диагностики в зависимости от состояния оборудования показана на рис. 1. Как следует из этой схемы, практически на каждом этапе работы оборудования проводится уточненная оценка его технического состояния с выдачей заключения о возможности его дальнейшего использования.

Рис. 1. Основные состояния оборудования:

1 — повреждение; 2 — отказ; 3 — переход в предельное состояние из-за неустранимого дефекта, морального старения и других факторов; 4— восстановление; 5 — ремонт

В зависимости от сложности и изученности оборудования результаты диагностики в виде заключений и рекомендаций могут быть получены либо в автоматическом режиме, либо после соответствующей экспертной оценки данных, полученных в результате диагностики оборудования.

Техническое обслуживание и ремонт в этом случае сводятся к устранению повреждений и дефектов, указанных в заключении но данным технического диагностирования или к нахождению места отказа.

О проведенных работах делаются соответствующие записи в документации, которая ведется на предприятии. Кроме того, результаты диагностики могут заноситься в соответствующие базы данных и передаваться другим субъектам системы диагностики.

Структурно система технической диагностики является информационно-измерительной системой и содержит датчики контролируемых параметров, линии связи с блоком сбора информации, блок обработки информации, блоки вывода и отображения информации, исполнительные устройства, устройства сопряжения с другими информационно-измерительными и управляющими системами (в частности, с системой противоаварийной автоматики, сигнал в которую поступает при выходе контролируемых параметров за установленные пределы). Система технической диагностики может проектироваться как самостоятельная, так и в качестве подсистемы в рамках уже существующей информационно-измерительной системы предприятия.

3. ПРИМЕРНЫЙ ПОРЯДОК ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ ЭЛЕКТРОУСТАНОВОК ПОТРЕБИТЕЛЕЙ (ПТЭЭП Приложение 2)

Исходя из данной примерной методики проведения технического диагностирования электроустановок Потребители составляют раздельно для основных видов электроустановок документ (ОСТ, СТП, регламент, и т. п.), включающий следующие разделы:

1. Задачи технического диагностирования:

Определение вида технического состояния;

Поиск места отказа или неисправностей;

Прогнозирование технического состояния.

2. Условия технического диагностирования:

Установить показатели и характеристики диагностирования;

Обеспечить приспособленность электроустановки к техническому диагностированию;

Разработать и осуществить диагностическое обеспечение.

3. Показатели и характеристики технического диагностирования.

3.1. Устанавливаются следующие показатели диагностирования:

Показатели точности и достоверности диагностирования;

Показатели технико-экономические.

Показатели точности и достоверности диагностирования приведены в таблице 1.

Показатели технико-экономические включают:

Объединенные материальные и трудовые затраты;

Продолжительность диагностирования;

Периодичность диагностирования.

3.2. Устанавливаются следующие характеристики диагностирования:

Номенклатура параметров электроустановки, позволяющих определить ее техническое состояние (при определении вида технического состояния электроустановки);

Глубина поиска места отказа или неисправности, определяемая уровнем конструктивной сложности составных частей или перечнем элементов, с точностью до которых должно быть определено место отказа или неисправности (при поиске места отказа или неисправности);

Номенклатура параметров изделия, позволяющих прогнозировать его техническое состояние (при прогнозировании техническое состояния).

4. Характеристика номенклатуры диагностических параметров.

4.1. Номенклатура диагностических параметров должна удовлетворять требованиям полноты, информативности и доступности измерения при наименьших затратах времени и стоимости реализации.

4.2. Диагностические параметры могут быть охарактеризованы приведением данных по номинальным и допускаемым значениям, точкам контроля и т. д.

5. Метод технического диагностирования.

5.1. Диагностическая модель электроустановки.

Электроустановка, подвергаемая диагностированию, задается в виде табличной диагностической карты (в векторной, графической или другой форме).

5.2. Правила определения структурных (определяющих) параметров. Этот параметр непосредственно и существенно характеризует свойство электроустановки или его узла. Возможно наличие несколько структурных параметров. Приоритет отдается тому (тем) параметру, который (которые) удовлетворяет требованиям определения истинного технического состояния данной электроустановки (узла) для заданных условий эксплуатации.

5.3. Правила измерения диагностических параметров.

Этот подраздел включает основные требования измерения диагностических параметров и имеющиеся соответствующие специфические требования.

5.4. Алгоритм диагностирования и программное обеспечение.

5.4.1. Алгоритм диагностирования.

Приводится описание перечня элементарных проверок объекта диагностирования. Элементарная проверка определяется рабочим или тестовым воздействием, поступающим или подаваемым на объект, а также составом признаков (параметров), образующих ответ объекта на соответствующее воздействие. Конкретные значения признаков (параметров), поручаемые при диагностировании, являются результатами элементарных проверок или значениями ответа объекта.

5.4.2. Необходимость программного обеспечения, разработки как конкретных диагностических программных продуктов, так и других программных продуктов для обеспечения функционирования в целом системы технического диагностирования определяется Потребителем.

5.5. Правила анализа и принятия решения, по диагностической информации.

5.5.1. Состав диагностической информации.

а) паспортные данные электроустановки;

б) данные о техническом состоянии электроустановки на начальный момент эксплуатации;

в) данные о текущем техническом состоянии с результатами измерений и обследований;

г) данные с результатами расчетов, оценок, предварительных прогнозов и заключений;

д) обобщенные данные по электроустановке.

Диагностическая информация вводится в отраслевую базу данных (при наличии таковой) и в базу данных Потребителя в соответствующем формате и структуре хранения информации. Методическое и практическое руководство осуществляет вышестоящая организация и специализированная организация.

5.5.2. В руководстве пользователю описывается последовательность и порядок анализа полученной диагностической информации, сравнения и сопоставления полученных после измерений и испытаний параметров и признаков; рекомендации и подходы при принятии решения по использованию диагностической информации.

6. Средства технического диагностирования.

6.1. Средства технического диагностирования должны обеспечивать определение (измерение) или контроль диагностических параметров и режимов работы электроустановки, установленных в эксплуатационной документации или принятых на данном предприятии в конкретных условиях эксплуатации.

6.2. Средства и аппаратура, применяемые для контроля диагностических параметров, должны позволять надежно определять измеряемые параметры. Надзор над средствами технического диагностирования должны вести метрологические службы соответствующих уровней функционирования системы технического диагностирования и осуществлять его согласно положению о метрологической службе.

Перечень средств, приборов и аппаратов, необходимых для технического диагностирования, устанавливается в соответствии с типом диагностируемой электроустановки.

7. Правила технического диагностирования.

7.1. Последовательность выполнения операций диагностирования. Описывается последовательность выполнения соответствующих измерений, экспертных оценок по всему комплексу диагностических параметров и характеристик, установленных для данной электроустановки представленных в диагностической карте. Содержание диагностической карты определяется типом электроустановки.

7.2. Технические требования по выполнению операций диагностирования.

При выполнении операций диагностирования необходимо соблюдение всех требований и указаний ПУЭ, настоящих Правил, Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок, других отраслевых документов, а также ГОСТов по диагностированию и надежности. Конкретные ссылки должны быть сделаны в рабочих документах.

7.3. Указания по режиму работы электроустановки при диагностировании.

Указывается режим работы электроустановки в процессе диагностирования. Процесс диагностирования может проходить во время функционирования электроустановки и тогда это - функциональное техническое диагностирование. Возможно диагностирование в режиме останова. Возможно диагностирование при форсированном режиме работы электроустановки.

7.4. Требования к безопасности процессов диагностирования и другие требования в соответствии со спецификой эксплуатации электроустановки.

Указываются общие и те основные требования техники безопасности при диагностировании, которые касаются той или иной электроустановки; при этом должны быть конкретно перечислены разделы и пункты соответствующих правил и директивных материалов.

Упоминается о необходимости наличия у организации, выполняющей работы по диагностированию, соответствующих разрешений.

Перед началом работ по диагностированию работники, в ней участвующие, должны получить наряд-допуск на производство работ.

В данном разделе должны быть сформулированы требования техники (безопасности при функциональном диагностировании и диагностировании при форсированном режиме работы электроустановки. Должны быть указаны и имеющиеся у данного Потребителя для конкретных условий эксплуатации данной электроустановки специфические требования.

8. Обработка результатов технического диагностирования.

8.1. Указания по регистрации результатов диагностирования. Указывается порядок регистрации результатов диагностирования, измерений и испытаний, приводятся формы протоколов и актов.

Даются указания и рекомендации по обработке результатов обследований, измерений и испытаний, анализу и сопоставлению полученных результатов с предыдущими, и выдаче заключения, диагноза. Даются рекомендации по проведению ремонтно-восстановительных работ.

Таблица 1.

Показатели достоверности и точности диагностирования электроустановок

Задача диагностирования

Результат

диагностирования

Показатели достоверности

и точности

Определение

вида технического состояния

Заключение в виде:

1. Электроустановка

исправна и (или) работоспособна

2. Электроустановка неисправна и(или) не

работоспособна

Вероятность того, что в результате диагностирования электроустановка

признается исправной (работоспособной) при условии, что она неисправна (неработоспособн a ).

Вероятность того, что в результате

диагностирования электроустановка

признается неисправной (неработоспособной) при условии, что она

исправна (работоспособна)

Поиск места

отказа или не исправностей

Наименование элемента (сборочной единицы) или группы

элементов, которые имеют неисправное состояние и место отказа или неисправностей

Вероятность того, что в результате диагностирования принимается решение об отсутствии отказа (неисправности) в данном элементе(группе) при условии, что данный отказ имеет место.

Вероятность того, что в результате диагностирования принимается решение о наличии отказа в данном элементе (группе) при условии, что данный отказ отсутствует

Прогнозирование технического состояния

Численное значение

параметров технического состояния на задаваемый период времени, в том числе и на данный момент времени. Численное значение остаточного ресурса (наработки). Нижняя граница вероятности безотказной работы по параметрам безопасности на задаваемый период времени

Среднеквадратическое отклонение прогнозируемого параметра. Среднеквадратическое отклонение прогнозируемого остаточного ресурса

Доверительная вероятность

Определение численных значений показателей диагностирования следует считать необходимым для особо важных объектов, установленных вышестоящей организацией, специализированной организацией и руководством Потребителя; других случаях применяется экспертная оценка, производимая ответственным электрохозяйство Потребителя.

Рис. 2. Этапы функционирования системы технической диагностики.

PAGE \* MERGEFORMAT 13

Другие похожие работы, которые могут вас заинтересовать.вшм>

6084. Техническая эксплуатация электрооборудования 287.48 KB
При определении объема работ для ЭТС необходимо физическое количество установленного в хозяйстве электрооборудования перевести в условное при помощи нормативных коэффициентов УЕЭ. В соответствии с этим различают индивидуальные и централизованные электротехнические службы ЭТС. Индивидуальную...
788. Техническая эксплуатация электрооборудования цеха обработки корпусных деталей 659.54 KB
В современных условиях эксплуатация электрооборудования требует глубоких и разносторонних знаний, а задачи создания нового или модернизации существующего электрифицированного технологического механизма или устройства решаются совместными усилиями инженеров и электротехнического персонала.
10349. Техническая диагностика СЭУ 584.21 KB
Эти требования удовлетворяются в той или иной мере на всех этапах существования объекта диагностирования ОД проектирование производство использование по назначению. В самом общем случае процесс технического диагностирования технического объекта предусматривает решение задач: 1 определения его действительного технического состояния; 2 поиска дефектов; 3 прогнозирования изменения технического состояния. В частных случаях в процессе диагностирования могут решаться отдельные из этих задач или их сочетания поскольку каждая из них...
18152. Основные средства используемые в учебно-тренировочном процессе - физическая, техническая и тактическая подготовка шестовиков 391.69 KB
Несмотря на значительные успехи в разработке методики технической подготовки прыгунов с шестом в настоящее время обучение прыжку остается достаточно сложной задачей для большинства тренирующихся в этом виде легкой атлетики. И для этого положения есть весомые основания: прыжок с шестом – сложное по координации действие выполняемое на подвижной опоре – шесте содержащее элементы гимнастики бега прыжков и лимитируемое временем выполнения движений требующих проявления значительных мышечных усилий. Для достижения этой цели необходимо решать...
2125. ОРГАНИЗАЦИЯ ЭКСПЛУАТАЦИИ. ЗАДАЧИ И МЕТОДЫ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ 9.71 KB
При текущем и плановопредупредительное обслуживании осуществляется: технический надзор за состоянием трассы и выполнением правил охраны общегосударственных средств связи; технический надзор за всеми сооружениями и действием устройств автоматики сигнализации и телемеханики; проведение профилактических; контроль за электрическими характеристиками кабеля; устранение выявленных неисправностей; обеспечение аварийного запаса кабеля арматуры и материалов в том числе кабеля облегченной конструкции для быстрого устранения повреждений на линии;...
6041. Классификация условий эксплуатации. Влияние условий эксплуатации на срок службы электродвигателей 161.8 KB
Классификация условий эксплуатации. Влияние условий эксплуатации на срок службы электродвигателей. Непрерывное диагностирование электрических машин. Классификация методов непрерывного диагностирования электрических машин.
6086. Диагностирование и испытание электрооборудования 58.34 KB
Назначение и виды испытаний электрооборудования. Диагностирование электрооборудования при проведении ТО и ТР Определение неисправностей и причин отказов простого электрооборудования у электротехнического персонала не вызывает особых затруднений...
11531. Электроснабжение ТОО «Аяз» и выбор электрооборудования 538.2 KB
Сети низкого напряжения промышленных предприятий отличаются большим числом электродвигателей, элементов пусковой и защитной аппаратуры и коммутационных аппаратов. В них расходуется огромное количество проводникового материала и кабельной продукции, поэтому рациональное построение цеховых электрических сетей имеет важное значение.
20727. Расчёт электрооборудования жилого здания 501.9 KB
В связи с этим инженер по специальности Электрооборудование и электроснабжение строительства должен обладать не только знанием но и умением применять новейшее электрооборудование для конкретных объектов строительства используя современные методики и правила а также действующую Нормативную документацию. Данные методические указания содержат базовые сведения для проектирования электрооборудования зданий: определение расчётных мощностей электрооборудования жилых зданий расчёт сечений электропроводящих жил кабелей и проводов по значениям...
12488. Электроснабжение электрооборудования ТП-82 13 микрорайона г. Братска 2.07 MB
Электрическая сеть – это совокупность устройств, которые служат для передачи и распределения электроэнергии от ее источников к электроприемникам. Источниками электроэнергии в энергосистеме являются тепловые, гидравлические, атомные и другие электростанции, независимо от места их размещения.

Методы и средства диагностирования систем электрооборудования автомобилей в эксплуатации

Электрооборудование современного автомобиля представляет собой разветвленную сеть последовательно или параллельно включенных источников и потребителей электрической энергии. Структурно ЭА состоит из шести систем (электроснабжения, пуска, зажигания, освещения и сигнализации, контроля и измерения, вспомогательного электрооборудования) , содержащих свои узлы и агрегаты (рис. 1.1).

В процессе эксплуатации начальное техническое состояние изделий ЭА изменяется (как правило, ухудшается) или происходит потеря работоспособности отдельных его узлов и агрегатов. По количеству неисправностей и трудоемкости их устранения изделия ЭА превалируют над другими системами (табл. 1) двигателя. Среди систем и агрегатов, обеспечивающих безопасность движения (ОВД), доля отказов изделий ЭА также велика

В настоящее время с целью восстановления изделий ЭА при операциях ТО и ремонта широко используются методы технической диагностики.

Система электроснабжения

Система электроснабжения предназначена для питания электрической энергией всех потребителей и поддержания постоянства напряжения в бортовой сети электрооборудования автомобиля. Источниками электрической энергии на автомобиле являются генератор и аккумуляторная батарея, включенные параллельно друг другу. Регулирование напряжения генератора в заданных пределах осуществляется регулятором напряжения.

К надежности работы и качеству электрической энергии в системе источников электрической энергии предъявляются высокие требования. Отклонение напряжения в бортовой сети автомобиля от расчетного не должно превышать ±3 %.

Колебание напряжения в пределах ±5 % от расчетного значения приводит к изменению светового потока на ±20 %, и срок службы ламп уменьшается в 2 раза.

Повышение регулируемого напряжения на 10 12 %

приводит к снижению срока службы аккумуляторной батареи в 2...2,5 раза. Надежность работы системы электроснабжения оказывает значительное влияние на экономичность работы автомобиля в эксплуатации.

На автомобилях, выпускаемых в настоящее время, устанавливают генераторы переменного тока. Примерно 20 % автомобилей, находящихся в эксплуатации, оснащены генераторами постоянного тока.

Генераторы переменного тока обладают свойствами самоограничения максимальной силы тока, а встроенные выпрямители препятствуют протеканию тока от аккумуляторной батареи по обмоткам статора. Поэтому с генераторами переменного тока работает только регулятор напряжения.

При поиске неисправностей систему электроснабжения можно разделить на генератор, регулятор напряжения (реле-регулятор), цепь заряда и цепь возбуждения. Визуальным симптомом неисправностей являются показания амперметра автомобиля.

При диагностировании необходимо проверить регулируемое напряжение и мощность, развиваемую генератором на определенных частотах вращения.

Однако с помощью измерения напряжения и тока выявить характерные неисправности генераторов переменного тока не представляется возможным. Большие возможности дает измерение ряда параметров с помощью осциллографа. С его помощью по характеристическим осциллограммам напряжения генератора определяют обрыв или замыкание обмотки статора на массу и пробой диодов выпрямителя. Кроме того, с помощью осциллографа можно оценить регулируемое напряжение реле-регулятора.

Для диагностирования генераторов и реле регуляторов непосредственно на автомобиле выпускается много приборов и стендов (см. разд. «Универсальные диагностические средства и комплексы»).

При проверке степени искрения щеток допускается искрение голубоватого цвета на 80 % рабочей поверхности щетки. Выскакивание искр из-под щеток недопустимо, оно указывает на недостаточное усилие прижатия щетки или износ коллектора. Желтое искрение свидетельствует об окислении или замасливании коллектора или щеток.

Усилие прижатия щетки пружиной можно измерить с помощью стрелочных весов. Для этого из щеткодержателя надо удалить одну щетку, а другой щеткой, оставшейся в щеткодержателе, нажать на чашку (рычаг) весов. Когда щетка выйдет из щеткодержателя на 2 мм, замеряют показание стрелки весов и сравнивают его с табличными данными (прил. 2). Аналогично проверяется и усилие прижатия другой щетки.

Натяжение приводных ремней генераторов может быть проверено с помощью приспособления НИИАТ К403.

При ЕО и ТО-1 приборы системы электроснабжения очищают от пыли и масла, проверяют надежность их крепления и натяжение приводного ремня. Углубленное диагностирование генераторов, реле-регуляторов и выпрямителей совмещают с ТО-2.

Система зажигания

Система зажигания представляет собой комплекс механических и электрических устройств, назначение которых - обеспечить надежность воспламенения топливно-воздушной смеси в цилиндрах двигателя в надлежащие моменты его рабочего цикла.

Исходя из назначения системы зажигания, основные требования к ней заключаются в том, чтобы:

вырабатывать напряжение, достаточное для пробоя искрового промежутка между электродами свечи;

сообщать искровому разряду энергию, необходимую для надежного воспламенения горючей смеси;

" воспламенять смесь в каждом цилиндре двигателя в моменты, соответствующие наивыгоднейшему углу опережения зажигания.

Основные процессы, происходящие в системе зажигания, имеют электрическую природу. Они протекают в двух связанных электрических цепях: первичной (низковольтной), включающей в себя аккумуляторную батарею, добавочный резистор, первичную обмотку катушки зажигания прерыватель и конденсатор; и вторичной, содержащей вторичную обмотку катушки зажигания, подавительный резистор, распределитель и свечи зажигания.

Состояние системы зажигания существенно влияет на динамические и экономические показатели автомобиля. Так, отклонение угла опережения зажигания от оптимального на 15...20° приводит к увеличению расхода топлива до 10 % и потере мощности двигателя до 15 %. Практика «оказывает, что до 30 % автомобилей, поступающих на ТО, имеют дефекты в элементах системы зажигания.

В настоящее время наряду с классической системой зажигания широко используются контактно-транзисторные и бесконтактные системы.

При ЕО и ТО-1 проверяются действие замка зажигания, состояние и крепление всех приборов, проводов, зажимов и изоляции. При ТО-2 осуществляется углубленное диагностирование. Важное место занимают при этом результаты внешнего осмотра. Например, исправная свеча должна быть сухой, без нагара на изоляторе, а цвет нижней части изолятора-красновато-коричневый. Светло-желтый или белый цвет изолятора свидетельствуют о перегреве свечи из-за пропуска газов в соединении ее с головкой блока. Если изолятор, корпус и электроды покрыты сухим слоем нагара - велико калильное число свечи, неправильно отрегулирован карбюратор, не соответствует требуемому сорт топлива.

Если вся ввертываемая часть свечи покрыта толстым блестящим слоем масла-велико калильное число свечи, неправильна установка зажигания, в цилиндры поступает богатая смесь или прорывается масло.

При перегреве свечи, белом изоляторе и корпусе, частично покрытом нагаром, причина --в раннем зажигании, низком калильном числе, бедной смеси и плохом охлаждении.

Обрыв или перегорание дополнительного сопротивления катушки зажигания

Отсутствие контакта в цепи выключатель зажигания - катушки зажигания

Исправность первичной цепи можно проверить на автомобиле с помощью контрольной лампы, один провод которой подключен на массу, а второй поочередно подключают к зажимам цепи. Зажигание при этом должно быть включено. Если первичная цепь исправна, а искры в зазоре между высоковольтным проводом катушки зажигания и массой отсутствуют, то неисправность - во вторичной цепи или разряжена аккумуляторная батарея.

Для выявления неработающей свечи во время работы четырехцилиндрового двигателя поочередно отключают свечи, вынимая из боковых выводов крышки распределителя высоковольтные провода. При отключении работающей свечи перебои в работе двигателя увеличиваются, а отключение неработающей свечи не изменит характер работы двигателя. Неработающая свеча всегда нагрета менее, чем остальные.

Крышки распределителя не должны иметь трещин, следов пробоя изоляции. Влага, масло и.грязь недопустимы. Подавителькые резисторы проверяют измерением их сопротивления, которое должно составлять 7...14 Ом.

Степень окисления контактов прерывателя определяют по падению напряжения на них. Для этого один провод вольтметра соединяют с корпусом прерывателя, а другой- с его зажимом (вольтметр включен параллельно контактам). При замкнутых контактах (зажигание включено) падение напряжения на них не должно превышать 0,1 В. Превышение этой величины свидетельствует о необходимости зачистить контакты.

От величины зазора между контактами прерывателя зависят многие показатели работы системы зажигания. При уменьшении зазора возрастают искрение и перенос металла с подвижного на неподвижный контакт (эрозия), уменьшается величина вторичного напряжения и, как следствие, возникают пропуски искрообразования в свечах. Увеличенный зазор приводит к уменьшению времени (т. е. угла) замкнутого состояния контактов и, следовательно, к уменьшению первичного тока и вторичного напряжения. Последнее, как и в предыдущем случае, обусловит пропуск искрообразования, особенно на быстроходных режимах. При этом существенно возрастает вибрация контактов.

Зазор между контактами можно измерить щупом. Однако вследствие эрозии на одном контакте будет лунка, а на другом - выступ: фактическая величина зазора будет больше, чем измеренная щупом. Поэтому на практике целесообразно измерять угол поворота кулачка, в пределах которого контакты замкнуты (угол замкнутого состояния контактов - УЗСК). Измерение УЗСК заключается в оценке средней величины силы тока через контакты при постоянной частоте вращения вала распределителя. При этом регистрирующий амперметр может быть проградуирован и непосредственно в градусах. Для четырехцилиндровых двигателей УЗСК составляет 46...50е (для двигателей ВАЗ-52...58°), шестицилиндровых - 38...43°, восьмицилиндровых - 28...32°.

Плохое крепление конденсатора к корпусу распределителя, снижение его емкости при подборе диэлектрика (без замыкания обкладок) также приводят к повышению искрения между контактами, их окислению, снижению первичного тока и вторичного напряжения и, как следствие, к перебоям в зажигании. Этот же симптом характерен для пробоя изоляции вторичной обмотки катушки зажигания и нарушения зазора между электродами свечи. Для проверки конденсатора и катушки зажигания высоковольтный провод вынимают из центрального ввода подводят его к массе с зазором 7 мм, снимают крышку и ротор распределителя и включают зажигание. Вращая рукояткой коленчатый вал двигателя, наблюдают за искрением. При неисправном конденсаторе между. контактами - сильное искрение, а между наконечником высоковольтного провода и «массой» искры либо не возникает, либо она будет нерегулярной при зазоре меньше 4 мм. Последнее характерно и для случая пробоя изоляции вторичной обмотки катушки. При этом, однако, искрение между контактами прерывателя отсутствует.

Трещины и пробой изоляции крышки распределителя при загрязнении и влаге создают каналы утечки тока высокого напряжения. Это вызывает несвоевременное воспламенение рабочей смеси, что проявляется в неравномерной работе двигателя или невозможности его пуска. Неправильная установка зажигания снижает мощность, экономичность и ухудшает устойчивость и приемистость работы двигателя. Потеря упругости пружин центробежного регулятора вследствие усталости металла или поломка одной из его пружин резко увеличивает угол опережения зажигания на малых и средних режимах работы. В результате появляются детонационные стуки в двигателе (особенно при движении груженого автомобиля на малой скорости). Угол опережения зажигания увеличивается и при увеличении зазора между контактами прерывателя.

Нарушение герметичности вакуумного регулятора из-за повреждения диафрагмы или прокладки под штуцером, трещины в крышке или неплотного соединения трубопровода снижает разрежение. Тогда при изменении нагрузки угол опережения зажигания не изменяется, что снижает экономичность двигателя.

Правильность установки начального угла опережения зажигания, а также оценку работоспособности центробежного и вакуумного регуляторов осуществляют с помощью специального стробоскопического прибора (см. табл. 15), выполненного в виде пистолета. Питание прибора- от бортовой сети проверяемого автомобиля. Прибор подсоединяется тремя клеммами: двумя - к аккумуляторной батарее, одной - к свече первого цилиндра двигателя.

Перед измерениями необходимо отрегулировать зазор между контактами прерывателя, пустить двигатель и прогреть его до температуры охлаждающей жидкости 70...90 °С; отсоединить от корпуса вакуумный автомат и установить минимальную частоту вращения коленчатого вала.

Включив прибор (стробоскопическая лампа начнет давать вспышки), направляют световой луч на подвижную контрольную метку. Расположение меток приведено в табл.

Вследствие стробоскопического эффекта при правильной установке зажигания подвижная метка будет казаться неподвижной и должна находиться против фактически неподвижной метки. Если метки не совпадают, необходимо отрегулировать зажигание. Для этого, не останавливая двигатель, нужно ослабить стяжной винт установочной скобы и повернуть распределитель (влево или вправо) до совпадения установочных меток; стяжной винт затянуть. Совпадения меток можно добиться и регулировкой октан-корректора. Таким образом, стробоскопический эффект позволяет наблюдать на всех режимах работы двигателя сдвиг между моментом зажигания и ВМТ.

Работоспособность центробежного автомата проверяют плавно увеличивая частоту вращения коленчатого вала. При исправном центробежном автомате подвижная метка будет плавно смещаться относительно неподвижной. Смещение метки рывками свидетельствует о заедании осей или заклинивании грузиков регулятора.

Работоспособность вакуумного автомата проверяется при частоте вращения коленчатого вала 2000...2500 мин-1 путем быстрого подключения трубки вакуумного регулятора. При этом из-за появившегося разрежения подвижная метка должна резко отклониться. Если она осталась в первоначальном состоянии, то это свидетельствует о засорении трубки или распылителя, отсутствии герметичности или повреждении пружины мембраны. Допустимые значения углов опережения зажигания приведены в прил. 4.

Другим методом определения угла опережения зажигания является контроль величины разрежения во впускном трубопроводе. Следует учесть, что оптимальной установке первоначального угла опережения зажигания соответствует максимальная величина разрежения во впускном трубопроводе.

В бесконтактных системах этот вид неисправности вообще исключается. Однако при диагностировании электронных систем зажигания категорически запрещается:

замыкать накоротко выводные клеммы, а также производить какие-либо переключения соединительных проводов, не предусмотренные инструкцией;

оставлять включенным зажигание при неработающем двигателе.

Приборы диагностирования электрооборудования

Отечественной промышленностью и за рубежом выпускаются приборы для диагностирования элементов только системы зажигания (табл. 15), а также комбинированные устройства и стенды, в которых элементы системы зажигания диагностируют наряду с другими (п. 3.1).

Принципы диагностирования всей системы зажигания вне зависимости от конструкции самой системы (контактная, бесконтактная) и применяемого оборудования и приборов являются едиными.

Подключение прибора в цепь зажигания или отключение разрешается производить только при неработающем двигателе, а прикасаться к индуктивному датчику во время измерений воспрещается.

Перед началом измерений необходимо проверить и отрегулировать зазор между контактами прерывателя и УЗСК.

Переносной прибор Э213 предназначен для проверки распределителей 4-, 6-, 8-цилиндровых двигателей, контроля сопротивления изоляции, измерения емкости конденсаторов и частоты вращения.

Стрелочный прибор с разнесенными шкалами типа SUN QST-500 предназначен для диагностирования системы зажигания по всем параметрам. Стробоскопический пистолет входит в комплект прибора наряду с индуктивными датчиками, устанавливаемыми на первом цилиндре. Ему аналогичен и «диагностический чемодан» Элкон-5220.

Описанная выше регистрация кривых напряжения переходных процессов в системе зажигания с помощью осциллографа обладает рядом недостатков (низкая точность измерения параметров, большие затраты времени, субъективность оператора). Указанные недостатки могут быть устранены с помощью устройства, в котором происходят измерение напряжений отдельных участков характеристической кривой системы зажигания, измерение временных интервалов характеристической кривой, сравнение измеренных параметров с их допустимыми значениями, анализ параметров неисправностей и выдача результатов диагноза.

На рис. 2.10 приведена блок-схема автоматизированной диагностической установки, использующей универсальную вычислительную машину (УВМ) М-6000 , лишенной указанных недостатков. В установке применен датчик угла поворота ДУП, который исключает необходимость применения стробоскопа для определения верхней мертвой точки первого цилиндра и, кроме того, позволяет определить ВМТ остальных цилиндров и выдает одноградусные импульсы поворота коленчатого вала двигателя. Сигналы с емкостного датчика вторичного напряжения ДВН поступают в преобразователь информации ПИ, состоящего из преобразователя импульсного напряжения в аналоговое Ua, построенного на усилителях; измерителя интегрального напряжения £/ин, определяющего площадь напряжения разряда, построенного на усилителе; формирователей длительности разряда.Рдл и конца разряда FK, построенных на интегральных схемах.

Сигналы с преобразователя информации поступают в УВМ, где аналоговая форма преобразуется в цифровую, а импульсы длительности разряда-во время. Дальнейшая их обработка происходит согласно алгоритму, изложенному в гл. 1 (см, рис. 1,3).

Разработаны принципиально новые формирователи сигнала первой свечи ФСПС и сигнала прерывателя ФСПр, построенные также на интегральных схемах. Формирователь этого типа нечувствителен к дребезжанию контактов прерывателя, что предотвращает появление ложных импульсов.

Система освещения и сигнализация

Приборы системы освещения и сигнализации (СО и С) относятся к элементам., обеспечивающим безопасность движения. Их проверка производится водителем на линии и контрольным механиком ежедневно на выпуске-возврате автомобиля, как правило, субъективными методами или при проведении ТО-1. и ТО-2 с использованием инструментальных средств.

При ежедневном обслуживании рекомендуется проверять рассеиватели, исправность всех приборов СО и С в различных положениях центрального и ножного переключателя света, а также переключателя указателей поворота, убедиться в исправности контрольных ламп.

При ТО-1 рекомендуется выполнить операции ЕО и проверить: крепление фар, подфарников, заднего фонаря, центрального переключателя света, переключателя указателей поворота и сигналов, крепление и состояние изоляции проводов фар и подфарников, надежность крепления наконечников проводов с клеммами.

При ТО-2 выполняются операции ТО-1, проверяются работа звукового сигнала, установка световых пучков и сила света фар, крепление проводов и переключателей.

Автономные осветительные приборы современного автомобиля должны отвечать двум в значительной степени противоречивым требованиям: создать возможность максимальной дальности видимости и освещать дорогу без ослепления встречного водителя.

В настоящее время распространение получили два типа светораспределения под условным названием «американское» (на автомобилях старых выпусков) и «европейское». Не отличаясь принципами создания режима дальнего света, они отличаются параметрами, определяющими светораспределение ближнего света. На автомобилях, оснащенных фарами с «американским» светораспределением, регулировка осуществляется по дальнему свету. На автомобилях, оборудованных фарами типа «европейский свет», имеющих как двух-, так и четырехфарную системы освещения, предусмотрена регулировка по ближнему свету. Для наиболее эффективной работы приборов излучаемые световые пучки, кроме соответствия установленным нормативам, должны быть жестко геометрически ориентированы относительно автомобиля. Причем чем выше качественные показатели световых приборов, тем более строго должна выдерживаться ориентация.

Вспомогательное оборудование

К приборам вспомогательного электрооборудования автомобиля относятся стеклоочистители, отопители, приводы подъема стекол, кондиционеры, коммутационная аппаратура и др. Работоспособность многих этих приборов зависит от приводных электродвигателей, которые должны проверяться при ТО-1 и ТО-2.

При «заедании» вала якоря в подшипниках частота вращения якоря уменьшается, а сила тока в цепи электродвигателя возрастает до значения, достаточного для срабатывания предохранителя.

Исправность предохранителя и различного рода переключателей можно проверить замыканием выводных зажимов проводником. Если цепь тока при этом восстанавливается, то предохранитель или коммутирующий элемент неисправен.

Короткое замыкание в цепи плавкого предохранителя вызывает его перегорание. Термобиметаллический же предохранитель в случае замыкания периодически размыкает и замыкает цепь, что сопровождается либо миганием ламп, либо характерными щелчками. Отыскивая неисправность в проводке с помощью контрольной лампы (вольтметра), нужно двигаться от потребителя к источнику тока (аккумуляторной батарее)

Электрооборудование электрооборудования автомобиля , негерметичность системы питания, нарушение герметичности...

Виды и средства диагностирования классифицируют на две основные группы: встроенные (бортовые) средства и внешние диагностические устройства. В свою очередь встроенные средства подразделяют на информационные, сигнализирующие и программируемые (запоминающие).

Внешние средства классифицируют как стационарные и переносные. Информационные бортовые средства являются конструктивным элементом транспортной машины и осуществляют контроль непрерывно или периодически по определенной программе.

Методы бортовой диагностики первого поколения

Примером информационной системы является блок индикации бортовой системы контроля, представленный на рис. 3.1.

Блок индикации предназначается для контроля и информации о состоянии отдельных изделий и систем. Он представляет собой электронную систему диагностирования звуковой и светодиодной сигнализации о состоянии износа тормозных колодок; пристегнутых ремнях безопасности; уровне омывающей, охлаждающей и тормозной жидкости, а также об уровне масла в картере двигателя; аварийном давлении масла; незакрытых дверях салона; неисправности ламп габаритных огней и сигнала торможения.

Блок находится в одном из пяти режимов: выключено, ждущий режим, тестовый режим, предвыездной контроль и контроль параметров при работе двигателя.

При открывании любой двери салона блок включает внутреннее освещение. Когда ключ зажигания не вставлен в выключатель зажигания, блок находится в режиме «выключено». После того как ключ вставлен в замок зажигания, блок переходит в «ждущий режим» и остается в нем, пока ключ в выключателе находится в режиме «выклю63

3.1. Классификация видов и средств диагностирования

Рис. 3.1.

блока индикации:

/ - датчик износа тормозных колодок; 2 - датчик пристегнутых ремней безопасности; 3 - датчик уровня омывающей жидкости; 4 - датчик уровня охлаждающей жидкости; 5 - датчик уровня масла; 6 - датчик аварийного давления масла; 7 - датчик стояночного тормоза; 8 - датчик уровня тормозной жидкости; 9 - блок индикации бортовой системы контроля; 10 - сигнализатор уровня масла; 11 - сигнализатор уровня омывающей жидкости; 12 - сигнализатор уровня охлаждающей жидкости; 13, 14, 15, 16 - сигнализатор незакрытых дверей; /7-сигнализатор неисправности ламп габаритных огней и торможения; 18 - сигнализатор износа тормозных колодок; 19 - сигнализатор непристегнутых ремней безопасности; 20 - комбинация приборов; 21 - контрольная лампа аварийного давления масла; 22 - сигнализатор стояночного тормоза; 23 - сигнализатор уровня тормозной жидкости; 24 - монтажный блок; 25 - выключатель зажигания

чено» или «О». Если в этом режиме открыта дверь водителя, то возникает неисправность «забытый ключ в выключателе зажигания», и звуковой сигнализатор подает прерывистый звуковой сигнал в течение 8 ± 2 с. Сигнал выключится, если дверь закрыта, ключ вынут из замка зажигания или повернут в положение «зажигание включено».

Режим тестирования включается после поворота ключа в выключателе зажигания в положение «1» или «зажигание». При этом на 4 ± 2 с включается звуковой сигнал и все светодиодные сигнализаторы для проверки их исправности. Одновременно контролируются неисправности по датчикам уровней охлаждающей, тормозной и омывающей жидкостей и запоминается их состояние. До окончания тестирования сигнализация состояния датчиков отсутствует.

После окончания тестирования следует пауза, и блок переходит в режим «предвыездной контроль параметров». При этом в случае наличия неисправностей, блок работает по следующему алгоритму:

  • светодиодные сигнализаторы параметров, вышедших за пределы установленной нормы, начинают мигать в течение 8 ± 2 с, после чего горят постоянно до выключения замка зажигания или положения «О»;
  • синхронно со светодиодами включается звуковой сигнализатор, который выключается через 8 ± 2 с.

Если в процессе движения автомобиля возникает неисправность, то включается алгоритм «предвыездной контроль параметров».

Если в течение 8 ± 2 с после начала световой и звуковой сигнализации появится еще один или несколько сигналов «неисправность», то мигание преобразуется в постоянное горение и алгоритм индикации повторится.

Кроме рассмотренной системы встроенного диагностирования на транспортных средствах широко применяется набор датчиков и сигнализаторов аварийных режимов (рис. 3.2), которые предупреждают о возможном состоянии перед отказом или о возникновении скрытых


Рис.

/ - датчик перегрева двигателя внутреннего сгорания; 2 - датчик аварийного давления масла; 3 - выключатель сигнализатора неисправности рабочих тормозов; 4 - выключатель сигнализатора стояночного тормоза отказов: перегрев двигателя, аварийное давление масла, неисправность рабочих тормозов и «стояночный тормоз включен», заряд АКБ отсутствует и т. д.

Программируемые, запоминающие встроенные средства диагностирования или самодиагностирования отслеживают и заносят в память информацию о неисправностях электронных систем для считывания ее с помощью авто-сканера через диагностический разъем и контрольного табло «Check engine», звуковой или речевой индикации о предотказном состоянии изделий или системы. Диагностический разъем используется и для подключения мотор-тестера.

Водитель информируется о неисправности с помощью контрольной лампы check engine (или светодиода), расположенной на панели приборов. Световая индикация означает неисправность в системе управления двигателем

Алгоритм работы программируемой диагностической системы заключается в следующем. При включении замка зажигания диагностическое табло загорится и, пока двигатель еще не работает, происходит проверка исправности элементов системы. После пуска двигателя табло гаснет. Если оно продолжает светиться, то обнаружена неисправность. При этом код неисправности заносится в память контроллера управления. Причину включения табло выясняют при первой же возможности. Если неисправность устраняется, то контрольное табло или лампа гаснет через 10 с, но код неисправности будет храниться в энергонезависимой памяти контроллера. Эти коды, хранящиеся в памяти контроллера, при проведении диагностирования высвечиваются каждый по три раза. Стирают коды неисправности из памяти по окончании ремонта путем отключения питания контроллера на 10 с путем отсоединения «-» АКБ или предохранителя контроллера.

Методы бортовой диагностики неразрывно связаны с развитием конструкции автомобилей и силового агрегата (двигателя внутреннего сгорания). Первыми устройствами бортовой диагностики на автомобилях были:

  • сигнализаторы снижения давления масла в двигателе, превышения температуры охлаждающей жидкости, минимального количества топлива в баке и т. д.
  • указательные приборы измерения давления масла, температур охлаждающей жидкости, количество топлива в баке;
  • бортовые системы контроля, которые позволяли осуществлять предвыездной контроль основных параметров двигателя внутреннего сгорания, износов тормозных колодок, пристегнутых ремней безопасности, исправности светотехнических приборов (см. рис. 3.1 и 3.2).

С появлением на автомобилях генераторов переменного тока и аккумуляторных батарей появились сигнализаторы контроля заряда батареи, а с появлением на борту автомобилей электронных устройств и систем были разработаны методы и встроенные электронные системы самодиагностики.

Система самодиагностики, интегрированная в контроллере электронной системы управления двигателем, силовым агрегатом, анти- блокировочной системы тормозов, проверяет и контролирует наличие сбоев в работе и погрешности их измеряемых режимных параметров. Обнаруженные сбои и погрешности в работе в виде специальных кодов заносятся в энергонезависимую память контроллера управления и высвечиваются в виде прерывистого светового сигнала на щитке приборов автомобиля.

Во время технического обслуживания эта информация может быть проанализирована с помощью внешних диагностических устройств.

Система самодиагностики осуществляет контроль входных сигналов от датчиков, контроль выходных сигналов из контроллера на входе исполнительных механизмов, контроль передачи данных между блоками управления электронных систем с помощью мультиплексных цепей, контроль внутренних рабочих функций блоков управления.

В табл. 3.1 представлены основные сигнальные цепи в системе самодиагностики контроллера управления двигаиелем внутреннего сгорания.

Контроль входных сигналов от датчиков осуществляется путем обработки этих сигналов (см. табл. 3.1) на наличие сбоев, коротких замыканий и обрывов в цепи между датчиком и контроллером управления. Функциональность системы обеспечивается путем:

  • контроля подачи напряжения питания к датчику;
  • анализа зарегистрированных данных на соответствие установленному диапазону параметра;
  • проведение проверки на достоверность регистрируемых данных при наличии дополнительной информации (например сравнение значения частоты вращения коленчатого и распределительного валов);

Таблица 3.1. Сигнальные цепи системы самодиагностики

Сигнальная цепь

Предмет и критерии контроля

Датчик перемещения педали газа

Контроль напряжения бортовой сети и диапазона сигнала отдатчика.

Проверка на достоверность избыточного сигнала. Достоверность стоп-сигнала

Датчик частоты вращения коленчатого вала

Проверка диапазона сигнала.

Проверка на достоверность сигнала с датчика. Проверка временных изменений (динамическая достоверность).

Логическая достоверность сигнала

Датчик температуры охлаждающей жидкости

Проверка на достоверность сигнала

Конечный выключатель педали тормоза

Проверка на достоверность избыточного контакта выключения

Сигнал о скорости автомобиля

Проверка диапазона сигнала.

Логическая достоверность сигнала о частоте вращения и количестве впрыскиваемого топлива/на- грузки двигателя

Исполнительный механизм клапана рециркуляции отработавших газов

Проверка на контактное замыкание и разрыв проводов.

Замкнутый контур управления системой рециркуляции.

Проверка реакции системы на управление клапаном системы рециркуляцииГ

Напряжение аккумуляторной батареи

Проверка диапазона сигнала.

Проверка достоверности данных о частоте вращения коленчатого вала (бензиновые ДВС)

Датчик температуры топлива

Проверка диапазона сигнала на дизельных ДВС. Проверка напряжения питания и диапазонов сигналов

Датчик давления наддува воздуха

Проверка достоверности сигнала от датчика атмосферного давления от других сигналов

Устройство управлением наддувом воздуха (байпасный клапан)

Проверка на короткое замыкание и разрыв проводки.

Отклонения в регулировании давления наддува

Окончание табл. 3.1

Проверка системных действий контуров регулирования (например, датчиков положения педали газа и дроссельной заслонки), в связи с чем их сигналы могут корректировать друг друга и сравниваться между собой.

Контроль выходных сигналов исполнительных механизмов, их соединений с контроллером на наличие сбоев, обрывов и коротких замыканий осуществляется:

  • аппаратным контролем контуров выходных сигналов оконечных каскадов исполнительных механизмов, проверяемых на короткие замыкания и обрывы соединительной проводки;
  • проверка системных действий исполнительных механизмов на достоверность (например, контур управления рециркуляцией ОГ контролируется по значению давления воздуха во впускном тракте и по адекватности реакции клапана рециркуляции на сигнал управления от контроллера управления).

Контроль передачи данных контроллером управления по линии CAN осуществляется проверкой временных интервалов управляющих сообщений между блоками управления агрегатами автомобиля. Дополнительно принятые сигналы избыточной информации проверяются в блоке управления, как и все входные сигналы.

В контроль внутренних функций контроллера управления для обеспечения правильной работы заложены функции аппаратного и программного контроля (например, логические модули в оконечных каскадах).

Возможна проверка работоспособности отдельных компонентов контроллера (например, микропроцессора, модулей памяти). Эти проверки регулярно повторяются во время рабочего процесса осуществления функции управления. Процессы, требующие очень высокой вычислительной мощности (например, постоянной памяти), у контроллера управления бензиновых двигателей контролируются на выбеге коленчатого вала в процессе остановки двигателя.

С применением на автомобилях микропроцессорных систем управления силовыми и тормозными агрегатами появились бортовые компьютеры контроля электрического и электронного оборудования (см. рис. 3.4) и, как отмечалось, встроенные в контроллеры управления системы самодиагностики.

Во время обычной эксплуатации автомобиля бортовой компьютер периодически тестирует электрические и электронные системы и их компоненты.

Микропроцессор контроллера управления заносит специфический код неисправности в энергонезависимую память КАМ (Keep Alive Memory ), которая способна сохранять информацию при отключении бортового питания. Это обеспечивается подключением микросхем памяти КАМ отдельным кабелем к аккумуляторной батарее или применением малогабаритных подзаряжаемых аккумуляторов, размещенных на печатной плате контроллера управления.

Коды неисправностей условно делят на «медленные» и «быстрые».

Медленные коды. При обнаружении неисправности ее код заносится в память и включается лампа check engine на панели приборов. Выяснить, какой это код, можно одним из следующих способов в зависимости от конкретной реализации контроллера:

  • светодиод на корпусе контроллера периодически вспыхивает и гаснет, передавая таким образом информацию о коде неисправности;
  • нужно соединить проводником определенные контакты диагностического разъема, и лампа на табло начнет периодически мигать, передавая информацию в коде неисправности;
  • нужно подключить светодиод или аналоговый вольтметр к определенным контактам диагностического разъема и по вспышкам светодиода (или колебаниям стрелки вольтметра) получить информацию о коде неисправности.

Так как медленные коды предназначены для визуального считывания, частота их передачи очень низкая (около 1 Гц), объем передаваемой информации мал. Коды обычно выдаются в виде повторяющихся последовательностей вспышек. Код содержит две цифры, смысловое значение которых затем расшифровывается по таблице неисправностей, входящей в состав эксплуатационных документов автомобиля. Длинными вспышками (1,5 с) передается старшая (первая) цифра кода, короткими (0,5 с) - младшая (вторая). Между цифрами пауза несколько секунд. Например, две длинные вспышки, затем пауза в несколько секунд, четыре коротких вспышки соответствуют коду неисправности 24. В таблице неисправностей указано, что код 24 соответствует неисправности датчика скорости автомобиля - короткое замыкание или обрыв в цепи датчика. После обнаружения неисправности ее необходимо выяснить, т. е. определить отказ датчика, разъема, проводки, крепления.

Медленные коды просты, надежны, не требуют дорогостоящего диагностического оборудования, но мало информативны. На современных автомобилях такой способ диагностирования используется редко. Хотя, например, на некоторых современных моделях фирмы Chrysler с бортовой диагностической системой, соответствующей стандарту OBD-II, можно считывать часть кодов ошибок с помощью мигающей лампы.

Быстрые коды обеспечивают выборку из памяти контроллера большого объема информации через последовательный интерфейс. Интерфейс и диагностический разъем используются при проверке и настройке автомобиля на заводе-изготовителе, он же применяется и при диагностике. Наличие диагностического разъема позволяет, не нарушая целостности электрической проводки автомобиля, получать диагностическую информацию от различных систем автомобиля с помощью сканера или мотор-тестера.