ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Принцип работы двигателя внутреннего сгорания. ДВС: устройство, работа, КПД

– универсальный силовой агрегат, используемый практически во всех видах современного транспорта. Три луча заключенные в окружность, слова «На земле, на воде и в небе» — товарный знак и девиз компании Мерседес Бенц, одного из ведущих производителей дизельных и бензиновых двигателей. Устройство двигателя, история его создания, основные виды и перспективы развития – вот краткое содержание данного материала.

Немного истории

Принцип превращения возвратно-поступательного движения во вращательное, посредством использования кривошипно-шатунного механизма известен с 1769 года, когда француз Николя Жозеф Кюньо показал миру первый паровой автомобиль. В качестве рабочего тела двигатель использовал водяной пар, был маломощным и извергал клубы черного, дурнопахнущего дыма. Подобные агрегаты использовались в качестве силовых установок на заводах, фабриках, пароходах и поездах, компактные же модели существовали в виде технического курьеза.

Все изменилось в тот момент, когда в поисках новых источников энергии человечество обратило свой взор на органическую жидкость — нефть. В стhемлении повысить энергетические характеристики данного продукта, ученные и исследователи, проводили опыты по перегонке и дистилляции, и, наконец, получили неизвестное доселе вещество – бензин. Эта прозрачная жидкость с желтоватым оттенком сгорала без образования копоти и сажи, выделяя намного большее, чем сырая нефть, количество тепловой энергии.

Примерно в то же время Этьен Ленуар сконструировал первый газовый двигатель внутреннего сгорания, работавший по двухтактной схеме, и запатентовал его в 1880 году.

В 1885 году немецкий инженер Готтлиб Даймлер, в сотрудничестве с предпринимателем Вильгельмом Майбахом, разработал компактный бензиновый двигатель, уже через год нашедший свое применение в первых моделях автомобилей. Рудольф Дизель, работая в направлении повышения эффективности ДВС (двигателя внутреннего сгорания), в 1897 году предложил принципиально новую схему воспламенения топлива. Воспламенение в двигателе, названном в честь великого конструктора и изобретателя, происходит за счет нагревания рабочего тела при сжатии.

А в 1903 году братья Райт подняли в воздух свой первый самолет, оснащенный бензиновым двигателем Райт-Тейлор, с примитивной инжекторной схемой подачи топлива.

Как это работает

Общее устройство двигателя и основные принципы его работы станут понятны при изучении одноцилиндровой двухтактной модели.

Такой ДВС состоит из:

  • камеры сгорания;
  • поршня, соединенного с коленвалом посредством кривошипно-шатунного механизма;
  • системы подачи и воспламенения топливно-воздушной смеси ;
  • клапана для удаления продуктов горения (выхлопных газов).

При пуске двигателя поршень начинает путь от верхней мертвой точки (ВМТ) к нижней (НМТ), за счет поворота коленвала. Достигнув нижней точки, он меняет направление движения к ВМТ, одновременно с чем проводится подача топливно-воздушной смеси в камеру сгорания. Движущийся поршень сжимает ТВС, при достижении верхней мертвой точки система электронного зажигания воспламеняет смесь. Стремительно расширяясь, горящие пары бензина отбрасывают поршень в нижнюю мертвую точку. Пройдя определенную часть пути, он открывает выхлопной клапан, через который раскаленные газы покидают камеру сгорания. Пройдя нижнюю точку, поршень меняет направление движения к ВМТ. За это время коленвал совершил один оборот.

Данные пояснения станут более понятными при просмотре видео о работе двигателя внутреннего сгорания.

Данный видеоролик наглядно показывает устройство и работу двигателя автомобиля.

Два такта

Основным недостатком двухтактной схемы, в которой роль газораспределительного элемента играет поршень, является потеря рабочего вещества в момент удаления выхлопных газов. А система принудительной продувки и повышенные требования к термостойкости выхлопного клапана приводят к увеличению цены двигателя. В противном случае добиться высокой мощности и долговечности силового агрегата не представляется возможным. Основная сфера применения подобных двигателей – мопеды и недорогие мотоциклы, лодочные моторы и бензокосилки.

Четыре такта

Описанных недостатков лишены четырехтактные ДВС, используемые в более «серьезной» технике. Каждая фаза работы такого двигателя (впуск смеси, ее сжатие, рабочий ход и выпуск отработанных газов), осуществляется при помощи газораспределительного механизма .

Разделение фаз работы ДВС очень условно. Инерционность отработавших газов, возникновение локальных вихрей и обратных потоков в зоне выхлопного клапана приводит к взаимному перекрыванию во времени процессов впрыска топливной смеси и удаления продуктов горения. Как результат, рабочее тело в камере сгорания загрязняется отработанными газами, вследствие чего меняются параметры горения ТВС, уменьшается теплоотдача, падает мощность.

Проблема была успешно решена путем механической синхронизации работы впускных и выпускных клапанов с оборотами коленвала. Проще говоря, впрыск топливно-воздушной смеси в камеру сгорания произойдет только после полного удаления отработанных газов и закрытия выхлопного клапана.

Но данная система управления газораспределением так же имеет свои недостатки. Оптимальный режим работы двигателя (минимальный расход топлива и максимальная мощность), может быть достигнут в достаточно узком диапазоне оборотов коленвала.

Развитие вычислительной техники и внедрение электронных блоков управления дало возможность успешно разрешить и эту задачу. Система электромагнитного управления работой клапанов ДВС позволяет на лету, в зависимости от режима работы, выбирать оптимальный режим газораспределения. Анимированные схемы и специализированные видео облегчат понимание этого процесса.

На основании видео не сложно сделать вывод, что современный автомобиль это огромное количество всевозможных датчиков.

Виды ДВС

Общее устройство двигателя остается неизменным достаточно долгое время. Основные различия касаются видов используемого топлива, систем приготовления топливно-воздушной смеси и схем ее воспламенения.
Рассмотрим три основных типа:

  1. бензиновые карбюраторные;
  2. бензиновые инжекторные;
  3. дизельные.

Бензиновые карбюраторные ДВС

Приготовление гомогенной (однородной по своему составу), топливно-воздушной смеси происходит путем распыления жидкого топлива в воздушном потоке, интенсивность которого регулируется степенью поворота дроссельной заслонки. Все операции по приготовлению смеси проводятся за пределами камеры сгорания двигателя. Преимуществами карбюраторного двигателя является возможность регулировки состава топливной смеси «на коленке», простота обслуживания и ремонта, относительная дешевизна конструкции. Основной недостаток – повышенный расход топлива.

Историческая справка. Первый двигатель данного типа сконструировал и запатентовал в 1888 году российский изобретатель Огнеслав Костович. Оппозитная система горизонтально расположенных и двигающихся навстречу друг другу поршней, до сих пор успешно используется при создании двигателей внутреннего сгорания. Самым известным автомобилем, в котором использовался ДВС данной конструкции, является Фольксваген Жук.

Бензиновые инжекторные ДВС

Приготовление ТВС осуществляется в камере сгорания двигателя, путем распыления топлива инжекторными форсунками. Управление впрыском осуществляется электронным блоком или бортовым компьютером автомобиля. Мгновенная реакция управляющей системы на изменение режима работы двигателя обеспечивает стабильность работы и оптимальный расход топлива. Недостатком считается сложность конструкции, профилактика и наладка возможны только на специализированных станциях технического обслуживания.

Дизельные ДВС

Приготовление топливно-воздушной смеси происходит непосредственно в камере сгорания двигателя. По окончании цикла сжатия воздуха, находящегося в цилиндре, форсунка проводит впрыск топлива. Воспламенение происходит за счет контакта с перегретым в процессе сжатия атмосферным воздухом. Всего лишь 20 лет назад низкооборотистые дизеля использовались в качестве силовых агрегатов специальной техники. Появление технологии турбонагнетания открыло им дорогу в мир легковых автомобилей.

Пути дальнейшего развития ДВС

Конструкторская мысль никогда не стоит на месте. Основные направления дальнейшего развития и усовершенствования двигателей внутреннего сгорания – повышение экономичности и минимизация вредных для экологии веществ в составе выхлопных газов. Применение слоистых топливных смесей, конструирование комбинированных и гибридных ДВС – лишь первые этапы долгого пути.

На современных тракторах и автомобилях в основном применяют поршневые двигатели внутреннего сгорания. Внутри этих двигателей сгорает горючая смесь (смесь топлива с воздухом в определенных соотношениях и количествах). Часть выделяющейся при этом теплоты преобразуется в механическую работу.

Классификация двигателей

Поршневые двигатели классифицируют по следующим признакам:

  • по способу воспламенения горючей смеси — от сжатия (дизели) и от электрической искры
  • по способу смесеобразования — с внешним (карбюраторные и газовые) и внутренним (дизели) смесеобразованием
  • по способу осуществления рабочего цикла — четырех- и двухтактные;
  • по виду применяемого топлива — работающие на жидком (бензин или дизельное топливо), газообразном (сжатый или сжиженный газ) топливе и мно­готопливные
  • по числу цилиндров — одно- и многоцилиндровые (двух-, трех-, четырех-, шестицилиндровые и т.д.)
  • по расположению цилиндров — однорядные, или линейные (цилиндры расположены в один ряд), и двухрядные, или V-образные (один ряд цилиндров размещен под углом к другому)

На тракторах и автомобилях большой грузоподъемности применяют четырехтактные многоцилиндровые дизели, на автомобилях легковых, малой и средней грузоподъемности — четырехтактные многоцилиндровые карбюра­торные и дизельные двигатели, а также двигатели, работающие на сжатом и сжиженном газе.

Основные механизмы и системы двигателя

Поршневой двигатель внутреннего сгорания состоит из:

  • корпусных деталей
  • кривошипно-шатунного механизма
  • газораспределительного механизма
  • системы питания
  • системы охлаждения
  • смазочной системы
  • системы зажигания и пуска
  • регулятора частоты вращения

Устройство четырехтактного одноцилиндрового карбюраторного двигателя показано на рисунке:

Рисунок. Устройство одноцилиндрового четырехтактного карбюра­торного двигателя:
1 — шестерни приводи распределительного вала; 2 — распределительный вал; 3 — толкатель; 4 — пружина; 5 — выпускная труба; 6 — впускная труба; 7 — карбюратор; 8 — выпускной кла­пан; 9 — провод к свече; 10 — искровая зажигательная свеча; 11 — впускной клапан; 12 — го­ловка цилиндра; 13 — цилиндр: 14 — водяная рубашка; 15 — поршень; 16 — поршневой палец; 17 — шатун; 18 — маховик; 19 — коленчатый вал; 20 — резервуар для масла (поддон картера).

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение ко­ленчатого вала и наоборот.

Механизм газораспределения (ГРМ) предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и вы­пуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (в карбюраторном и газовом двигателях) или наполнения ци­линдра воздухом и подачи в него топлива под высоким давлением (в дизеле). Кроме того, эта система отводит наружу выхлопные газы.

Система охлаждения необходима для поддержания оптимального теп­лового режима двигателя. Вещество, отводящее от деталей двигателя избы­ток теплоты, — теплоноситель может быть жидкостью или воздухом.

Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлажде­ния, защиты от коррозии и вымывания продуктов изнашивания.

Система зажигания служит для своевременного зажигания рабочей смеси электрической искрой в цилиндрах карбюраторного и газового двига­телей.

Система пуска — это комплекс взаимодействующих механизмов и сис­тем, обеспечивающих устойчивое начало протекания рабочего цикла в ци­линдрах двигателя.

Регулятор частоты вращения — это автоматически действующий меха­низм, предназначенный для изменения подачи топлива или горючей смеси в зависимости от нагрузки двигателя.

У дизеля в отличие от карбюраторного и газового двигателей нет сис­темы зажигания и в системе питания вместо карбюратора или смесителя ус­тановлена топливная аппаратура (топливный насос высокого давления, топ­ливопроводы высокого давления и форсунки).

Двигатели внутреннего сгорания

Часть I основы теории двигателей

1. КЛАССИФИКАЦИЯ И ПРИНЦИП РАБОТЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

1.1. Общие сведения и классификация

1.2. Рабочий цикл четырехтактного ДВС

1.3. Рабочий цикл двухтактного ДВС

2. ТЕПЛОВОЙ РАСЧЕТ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

2.1. Теоретические термодинамические циклы ДВС

2.1.1. Теоретический цикл с подводом теплоты при постоянном объеме

2.1.2. Теоретический цикл с подводом теплоты при постоянном давлении

2.1.3. Теоретический цикл с подводом теплоты при постоянном объеме и постоянном давлении (смешанный цикл)

2.2. Действительные циклы ДВС

2.2.1. Рабочие тела и их свойства

2.2.2. Процесс впуска

2.2.3. Процесс сжатия

2.2.4. Процесс сгорания

2.2.5. Процесс расширения

2.2.6. Процесс выпуска

2.3. Индикаторные и эффективные показатели двигателя

2.3.1. Индикаторные показатели двигателей

2.3.2. Эффективные показатели двигателей

2.4. Особенности рабочего цикла и теплового расчета двухтактных двигателей

3. ПАРАМЕТРЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ .

3.1. Тепловой баланс двигателей

3.2. Определение основных размеров двигателей

3.3. Основные параметры двигателей.

4. ХАРАКТЕРИСТИКИ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

4.1. Регулировочные характеристики

4.2. Скоростные характеристики

4.2.1. Внешняя скоростная характеристика

4.2.2. Частичные скоростные характеристики

4.2.3. Построение скоростны характеристик аналитическим методом

4.3. Регуляторная характеристика

4.4. Нагрузочная характеристика

Список литературы

1. Классификация и принцип работы двигателей внутреннего сгорания

      Общие сведения и классификация

Поршневым двигателем внутреннего сгорания (ДВС) называют такую тепловую машину, в которой превращение химической энергии топлива в тепловую, а затем в механическую энергию, происходит внутри рабочего цилиндра. Превращение теплоты в работу в таких двигателях связано с реализацией целого комплекса сложных физико-химических, газодинамических и термодинамических процессов, которые определяют различие рабочих циклов и конструктивного исполнения.

Классификация поршневых двигателей внутреннего сгорания приведена на рис. 1.1. Исходным признаком классификации принят род топлива, на котором работает двигатель. Газообразным топливом для ДВС служат природный, сжиженный и генераторный газы. Жидкое топливо представляет собой продукты переработки нефти: бензин, керосин, дизельное топливо и др. Газожидкостные двигатели работают на смеси газообразного и жидкого топлива, причем основным топливом является газообразное, а жидкое используется как запальное в небольшом количестве. Многотопливные двигатели способны длительно работать на разных топливах в диапазоне от сырой нефти до высокооктанового бензина.

Двигатели внутреннего сгорания классифицируют также по следующим признакам:

    по способу воспламенения рабочей смеси – с принудительным воспламенением и с воспламенением от сжатия;

    по способу осуществления рабочего цикла – двухтактные и четырехтактные, с наддувом и без наддува;

Рис. 1.1. Классификация двигателей внутреннего сгорания.

    по способу смесеобразования – с внешним смесеобразованием (карбюраторные и газовые) и с внутренним смесеобразованием (дизельные и бензиновые с впрыском топлива в цилиндр);

    по способу охлаждения – с жидкостным и воздушным охлаждением;

    по расположению цилиндров – однорядные с вертикальным, наклонным горизонтальным расположением; двухрядные с V-образным и оппозитным расположением.

Преобразование химической энергии топлива, сжигаемого в цилиндре двигателя, в механическую работу совершается с помощью газообразного тела – продуктов сгорания жидкого или газообразного топлива. Под действием давления газов поршень совершает возвратно-поступательное движение, которое преобразуется во вращательное движение коленчатого вала с помощью кривошипно-шатунного механизма ДВС. Прежде чем рассматривать рабочие процессы, остановимся на основных понятиях и определениях, принятых для двигателей внутреннего сгорания.

За один оборот коленчатого вала поршень дважды будет находиться в крайних положениях, где изменяется направление его движения (рис 1.2). Эти положения поршня принято называть мертвыми точками , так как усилие, приложенное к поршню в этот момент, не может вызвать вращательного движения коленчатого вала. Положение поршня в цилиндре, при котором расстояние его от оси вала двигателя достигает максимума, называетсяверхней мертвой точкой (ВМТ).Нижней мертвой точкой (НМТ) называют такое положение поршня в цилиндре, при котором расстояние его от оси вала двигателя достигает минимума.

Расстояние по оси цилиндра между мертвыми точками называют ходом поршня. Каждому ходу поршня соответствует поворот коленчатого вала на 180°.

Перемещение поршня в цилиндре вызывает изменение объема надпоршневого пространства. Объем внутренней полости цилиндра при положении поршня в ВМТ называют объемом камеры сгорания V c .

Объем цилиндра, образуемый поршнем при его перемещении между мертвыми точками, называется рабочим объемом цилиндра V h .

где D – диаметр цилиндра, мм;

S – ход поршня, мм

Объем надпоршневого пространства при положении поршня в НМТ называют полным объемом цилиндра V a .

Рис 1.2.Схема поршневого двигателя внутреннего сгорания

Рабочий объем двигателя представляет собой произведение рабочего объема цилиндра на число цилиндров.

Отношение полного объема цилиндра V a к объему камеры сгоранияV c называютстепенью сжатия

.

При перемещении поршня в цилиндре кроме изменения объема рабочего тела изменяются его давление, температура, теплоемкость, внутренняя энергия. Рабочим циклом называют совокупность последовательных процессов, осуществляемых с целью превращения тепловой энергии топлива в механическую.

Достижение периодичности рабочих циклов обеспечивается с помощью специальных механизмов и систем двигателя.

Рабочий цикл любого поршневого двигателя внутреннего сгорания может быть осуществлен по одной из двух схем, изображенных на рис. 1.3.

По схеме, изображенной на рис. 1.3а, рабочий цикл осуществляется следующим образом. Топливо и воздух в определенных соотношениях перемешиваются вне цилиндра двигателя и образуют горючую смесь. Полученная смесь поступает в цилиндр (впуск), после чего она подвергается сжатию. Сжатие смеси, как будет показано ниже, необходимо для увеличения работы за цикл, так как при этом расширяются температурные пределы, в которых протекает рабочий процесс. Предварительное сжатие создает также лучшие условия для сгорания смеси воздуха с топливом.

Во время впуска и сжатия смеси в цилиндре происходит дополнительное перемешивание топлива с воздухом. Подготовленная горючая смесь воспламеняется в цилиндре при помощи электрической искры. Вследствие быстрого сгорания смеси в цилиндре резко повышается температура и, следовательно, давление, под воздействием которого происходит перемещение поршня от ВМТ к НМТ. В процессе расширения нагретые до высокой температуры газы совершают полезную работу. Давление, а вместе с ним и температура газов в цилиндре при этом понижаются. После расширения следует очистка цилиндра от продуктов сгорания (выпуск), и рабочий цикл повторяется.

Рис. 1.3.Схемы рабочего цикла двигателей

В рассмотренной схеме подготовка смеси воздуха с топливом, т. е. процесс смесеобразования, происходит в основном вне цилиндра, и наполнение цилиндра производится готовой горючей смесью, поэтому двигатели, работающие по этой схеме, называются двигателями с внешним смесеобразованием. К числу таких двигателей относятся карбюраторные двигатели, работающие на бензине, газовые двигатели, а также двигатели с впрыском топлива во впускной трубопровод, т. е. двигатели, в которых применяется топливо, легко испаряющееся и хорошо перемешивающееся с воздухом при обычных условиях.

Сжатие смеси в цилиндре у двигателей с внешним смесеобразованием должно быть таким, чтобы давление и температура в конце сжатия не достигали значений, при которых могли бы произойти преждевременная вспышка или слишком быстрое (детонационное) сгорание. В зависимости от применяемого топлива, состава смеси, условий теплопередачи в стенки цилиндра и т. д. давление конца сжатия у двигателей с внешним смесеобразованием находится в пределах 1.0–2.0 МПа.

Если рабочий цикл двигателя происходит по схеме, описанной выше, то обеспечивается хорошее смесеобразование и использование рабочего объема цилиндра. Однако ограниченность степени сжатия смеси не позволяет улучшить экономичность двигателя, а необходимость в принудительном зажигании усложняет его конструкцию.

В случае осуществления рабочего цикла по схеме, показанной на рис. 1.3б, процесс смесеобразования происходит только внутри цилиндра. Рабочий цилиндр в данном случае заполняется не смесью, а воздухом (впуск), который и подвергается сжатию. В конце процесса сжатия в цилиндр через форсунку под большим давлением впрыскивается топливо. При впрыскивании оно мелко распыляется и перемешивается с воздухом в цилиндре. Частицы топлива, соприкасаясь с горячим воздухом, испаряются, образуя топливовоздушную смесь. Воспламенение смеси при работе двигателя по этой схеме происходит в результате разогрева воздуха до температур, превышающих самовоспламенение топлива вследствие сжатия. Впрыск топлива во избежание преждевременной вспышки начинается только в конце такта сжатия. К моменту воспламенения обычно впрыск топлива еще не заканчивается. Топливовоздушная смесь, образующаяся в процессе впрыска, получается неоднородной, вследствие чего полное сгорание топлива возможно лишь при значительном избытке воздуха. В результате более высокой степени сжатия, допустимой при работе двигателя по данной схеме, обеспечивается и более высокий КПД. После сгорания топлива следует процесс расширения и очистка цилиндра от продуктов сгорания (выпуск). Таким образом, в двигателях, работающих по второй схеме, весь процесс смесеобразования и подготовка горючей смеси к сгоранию происходят внутри цилиндра. Такие двигатели называются двигателямис внутренним смесеобразованием . Двигатели, в которых воспламенение топлива происходит в результате высокого сжатия, называютсядвигателями с воспламенением от сжатия, или дизелями.

      Рабочий цикл четырехтактного ДВС

Двигатель, рабочий цикл которого осуществляется за четыре такта, или за два оборота коленчатого вала, называется четырехтактным . Рабочий цикл в таком двигателе происходит следующим образом.

Первый такт – впуск (рис. 1.4). В начале первого такта поршень находится в положении, близком к ВМТ. Впуск начинается с момента открытия впускного отверстия, за 10–30° до ВМТ.

Рис. 1.4. Впуск

Камера сгорания заполнена продуктами сгорания от предыдущего процесса, давление которых несколько больше атмосферного. На индикаторной диаграмме начальному положению поршня соответствует точка r . При вращении коленчатого вала (в направлении стрелки) шатун перемещает поршень к НМТ, а распределительный механизм полностью открывает впускной клапан и соединяет надпоршневое пространство цилиндра двигателя с впускным трубопроводом. В начальный момент впуска клапан только начинает подниматься и впускное отверстие представляет собой круглую узкую щель высотой в несколько десятых долей миллиметра. Поэтому в этот момент впуска горючая смесь (или воздух) в цилиндр почти не проходит. Однако опережение открытия впускного отверстия необходимо для того, чтобы к моменту начала опускания поршня после прохода им ВМТ оно было бы открыто возможно больше и не затрудняло бы поступления воздуха или смеси в цилиндр. В результате движения поршня к НМТ цилиндр заполняется свежим зарядом (воздухом или горючей смесью).

При этом вследствие сопротивления впускной системы и впускных клапанов давление в цилиндре становится на 0.01–0.03 МПа меньше давления во впускном трубопроводе. На индикаторной диаграмме такту впуска соответствует линияrа.

Такт впуска состоит из впуска газов, происходящего при ускорении движения опускающегося поршня, и впуска при замедлении его движения.

Впуск при ускорении движения поршня начинается в момент начала опускания поршня и заканчивается в момент достижения поршнем максимальной скорости приблизительно при 80° поворота вала после ВМТ. В начале опускания поршня вследствие малого открытия впускного отверстия в цилиндр проходит мало воздуха или смеси, а поэтому остаточные газы, оставшиеся в камере сгорания от предшествующего цикла, расширяются и давление в цилиндре падает. При опускании поршня горючая смесь или воздух, находившаяся в покое во впускном трубопроводе или двигавшаяся в нем с небольшой скоростью, начинает проходить в цилиндр с постепенно увеличивающейся скоростью, заполняя объем, освобождаемый поршнем. По мере опускания поршня его скорость постепенно увеличивается и достигает максимума при повороте коленчатого вала примерно на 80°. При этом впускное отверстие открывается все больше и больше и горючая смесь (или воздух) в цилиндр проходит в больших количествах.

Впуск при замедленном движении поршня начинается с момента достижения поршнем наибольшей скорости и оканчивается НМТ, когда скорость его равна нулю. По мере уменьшения скорости поршня скорость смеси (или воздуха), проходящей в цилиндр, несколько уменьшается, однако в НМТ она не равна нулю. При замедленном движении поршня горючая смесь (или воздух) поступает в цилиндр за счет увеличения объема цилиндра, освобождаемого поршнем, а также за счет своей силы инерции. При этом давление в цилиндре постепенно повышается и в НМТ может даже превышать давление во впускном трубо- проводе.

Давление во впускном трубопроводе может быть близким к атмосферному в двигателях без наддува или выше него в зависимости от степени наддува (0.13–0.45 МПа) в двигателях с наддувом.

Впуск окончится в момент закрытия впускного отверстия (40–60°) после НМТ. Задержка закрытия впускного клапана происходит при постепенно поднимающемся поршне, т.е. уменьшающемся объеме газов в цилиндре. Следовательно, смесь (или воздух) поступает в цилиндр за счет ранее созданного разрежения или инерции потока газа, накопленной в процессе течения струи в цилиндр.

При малых числах оборотов вала, например при пуске двигателя, сила инерции газов во впускном трубопроводе почти полностью отсутствует, поэтому во время задержки впуска будет идти обратный выброс смеси (или воздуха), поступившей в цилиндр ранее во время основного впуска.

При средних числах оборотов инерция газов больше, поэтому в самом начале подъема поршня происходит дозарядка. Однако по мере подъема поршня давление газов в цилиндре увеличится и начавшаяся дозарядка может перейти в обратный выброс.

При больших числах оборотов сила инерции газов во впускном трубопроводе близка к максимуму, поэтому происходит интенсивная дозарядка цилиндра, а обратный выброс не наступает.

Второй такт – сжатие. При движении поршня от НМТ к ВМТ (рис. 1.5) производится сжатие поступившего в цилиндр заряда.

Давление и температура газов при этом повышаются, и при некотором перемещении поршня от НМТ давление в цилиндре становится одинаковым с давлением впуска (точка т на индикаторной диаграмме). После закрытия клапана при дальнейшем перемещении поршня давление и температура в цилиндре продолжают повышаться. Значение давления в конце сжатия (точкас ) будет зависеть от степени сжатия, герметичности рабочей полости, теплоотдачи в стенки, а также от величины начального давления сжатия.

Рис 1.5. Сжатие

На воспламенение и процесс сгорания топлива как при внешнем, так и при внутреннем смесеобразовании требуется некоторое время, хотя и очень незначительное. Для наилучшего использования теплоты, выделяющейся при сгорании, необходимо, чтобы сгорание топлива заканчивалось при положении поршня, возможно близком к ВМТ. Поэтому воспламенение рабочей смеси от электрической искры в двигателях с внешним смесеобразованием и впрыск топлива в цилиндр двигателей с внутренним смесеобразованием обычно производятся до прихода поршня в ВМТ.

Таким образом, во время второго такта в цилиндре в основном производится сжатие заряда. Кроме того, в начале такта продолжается зарядка цилиндра, а в конце начинается сгорание топлива. На индикаторной диаграмме второму такту соответствует линия ас.

Третий такт – сгорание и расширение. Третий такт происходит при ходе поршня от ВМТ к НМТ (рис. 1.6). В начале такта интенсивно сгорает топливо, поступившее в цилиндр и подготовленное к этому в конце второго такта.

Вследствие выделения большого количества теплоты температура и давление в цилиндре резко повышаются, несмотря на некоторое увеличение внутри цилиндрового объема (участок сz на индикаторной диаграмме).

Под действием давления происходит дальнейшее перемещение поршня к НМТ и расширение газов. Во время расширения газы совершают полезную работу, поэтому третий такт называют также рабочим ходом. На индикаторной диаграмме третьему такту соответствует линиясzb.

Рис. 1.6. Расширение

Четвертый такт – выпуск. Во время четвертого такта происходит очистка цилиндра от выпускных газов (рис. 1.7). Поршень, перемещаясь от НМТ к ВМТ, вытесняет газы из цилиндра через открытый выпускной клапан. В четырехтактных двигателях открывают выпускное отверстие на 40–80° до прихода поршня в НМТ (точкаb ) и закрывают его через 20-40° после прохода поршнем ВМТ. Таким образом, продолжительность очистки цилиндра от отработавших газов составляет в разных двигателях от 240 до 300° угла поворота коленчатого вала.

Процесс выпуска можно разделить на предварение выпуска, происходящее при опускающемся поршне от момента открытия выпускного отверстия (точка b ) до НМТ, т. е. в течение 40–80°, и основной выпуск, происходящий при перемещении поршня от НМТ до закрытия выпускного отверстия, т. е. в течение 200–220° поворота коленчатого вала.

Во время предварения выпуска поршень опускается, и удалять из цилиндра отработавшие газы не может.

Однако в начале предварения выпуска давление в цилиндре значительно выше, чем в выпускном коллекторе.

Поэтому отработавшие газы за счет собственного избыточного давления с критическими скоростями выбрасываются из цилиндра. Истечение газов с такими большими скоростями сопровождается звуковым эффектом, для поглощения которого устанавливают глушители.

Критическая скорость истечения отработавших газов при температурах 800 –1200 К составляет 500–600 м/сек.

Рис. 1.7. Выпуск

При подходе поршня к НМТ давление и температура газа в цилиндре понижаются и скорость истечения отработавших газов падает.

Когда поршень подойдет к НМТ, давление в цилиндре понизится. При этом критическое истечение окончится и начнется основной выпуск.

Истечение газов во время основного выпуска происходит с меньшими скоростями, достигающими в конце выпуска 60–160 м/сек.

Таким образом, предварение выпуска менее продолжительно, скорости газов очень велики, а основной выпуск примерно в три раза продолжительнее, но газы в это время выводят из цилиндра с меньшими скоростями.

Поэтому количества газов, выходящих из цилиндра во время предварения выпуска и основного выпуска, примерно одинаковы.

По мере уменьшения частоты вращения двигателя уменьшаются все давления цикла, а следовательно, и давления в момент открытия выпускного отверстия. Поэтому при средних частотах вращения сокращается, а при некоторых режимах (при малых оборотах) совершенно пропадает истечение газов с критическими скоростями, характерными для предварения выпуска.

Температура газов в трубопроводе по углу поворота кривошипа меняется от максимальной в начале выпуска до минимальной в конце. Предварение открытия выпускного отверстия несколько уменьшает полезную площадь индикаторной диаграммы. Однако более позднее открытие этого отверстия вызовет задержку газов с высоким давлением в цилиндре и на их удаление при перемещении поршня придется затратить дополнительную работу.

Небольшая задержка закрытия выпускного отверстия создает возможность использования инерции выпускных газов, ранее вышедших из цилиндра, для лучшей очистки цилиндра от сгоревших газов. Несмотря на это, часть продуктов сгорания неизбежно остается в головке цилиндра, переходя от каждого данного цикла к последующему в виде остаточных газов. На индикаторной диаграмме четвертому такту соответствует линия zb.

Четвертым тактом заканчивается рабочий цикл. При дальнейшем движении поршня в той же последовательности повторяются все процессы цикла.

Только такт сгорания и расширения является рабочим, остальные три такта осуществляются за счет кинетической энергии вращающегося коленчатого вала с маховиком и работы других цилиндров.

Чем полнее будет очищен цилиндр от выпускных газов и чем больше поступит в него свежего заряда, тем больше, следовательно, можно будет получить полезной работы за цикл.

Для улучшения очистки и наполнения цилиндра выпускной клапан закрывается не в конце такта выпуска (ВМТ), а несколько позднее (при повороте коленчатого вала на 5–30° после ВМТ), т. е. в начале первого такта. По этой же причине и впускной клапан открывается с некоторым опережением (за 10–30° до ВМТ, т. е. в конце четвертого такта). Таким образом, в конце четвертого такта в течение некоторого периода могут быть открыты оба клапана. Такое положение клапанов называется перекрытием клапанов. Оно способствует улучшению наполнения в результате эжектирующего действия потока газов в выпускном трубопроводе.

Из рассмотрения четырехтактного цикла работы следует, что четырехтактный двигатель только половину времени, затраченного на цикл, работает как тепловой двигатель (такты сжатия и расширения). Вторую половину времени (такты впуска и выпуска) двигатель работает как воздушный насос.

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. КШМ - кривошипно-шатунный механизм.
  2. ГРМ - механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ - кривошипно-шатунный механизм

КШМ - основной механизм поршневого мотора. Он выполняет главную работу - преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.


ГРМ - газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов - впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с .
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Система питания

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива - грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры - воздушный фильтр и патрубки - тоже относятся к топливной системе.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

ДВС - это двигатель, работающий по принципу сжигания различного топлива непосредственно внутри самого агрегата. В отличие от двигателей другого типа, ДВС лишены: любых элементов передающих тепло для дальнейшего преобразования в механическую энергию, преобразование происходит непосредственно от сгорания топлива; значительно компактнее; имеют малый вес относительно агрегатов другого типа со сравнимой мощностью; требуют использования определенного топлива с жесткими характеристиками температуры горения, степени испаряемости, октановым числом и т. д.

В автомобилестроении применяются четырехтактные моторы:

1. Впуск;

2. Сжатие;

3. Рабочий ход;

4. Выпуск.
Но существуют и двухтактные версии двигателей внутреннего сгорания, но в современном мире, они имеют ограниченное применение.

В данной статье будут рассмотрены только моторы, устанавливающиеся на автомобили.

Разновидности двигателей по использующемуся топливу

Бензиновые моторы, как понятно из названия используют в качестве топлива для работы - бензин с различным октановым числом, и имеют систему принудительного поджига топливной смеси при помощи электрической искры.

Могут разделяться по типу впуска на карбюраторные и инжекторные. Карбюраторные моторы уже пропадают из производства из-за сложности в точной настройке, высокого потребления бензина, неэффективности смешивания топливной смеси и несоответствия современным жестким экологическим требованиям. В таких моторах, смешивание горючей смеси начинается в камерах карбюратора и заканчивается по пути во впускном коллекторе.


Инжекторные агрегаты развиваются большими темпами, и система впрыска топлива улучшается с каждым поколением. Первые инжектора имели «моновпрыск» с единственной форсункой. По сути, это была модернизация карбюраторных моторов. Со временем, на большинстве агрегатов, начали использоваться системы с отдельными форсунками на каждый цилиндр. Использование форсунок в системе впуска, позволило точнее контролировать пропорции топлива и воздуха в разных режимах работы агрегата, снизить расход топлива, увеличить качество топливной смеси, увеличить мощность и экологичность силовых агрегатов.

Современные форсунки, устанавливающиеся на силовые агрегаты с системой непосредственного впрыска топлива в цилиндры, способны производить несколько отдельных впрысков топлива за один такт. Это позволяет еще улучшить качество топливной смеси и добиваться максимальной отдачи энергии от используемого количества бензина. То есть, еще больше увеличилась экономия и производительность моторов.


Дизельные агрегаты - используют принцип воспламенения смеси дизельного топлива и воздуха при нагреве от сильного сжатия. При этом, в дизельных агрегатах не используются системы принудительного поджига. Данные моторы имеют ряд преимуществ перед бензиновыми, в первую очередь - это экономность топлива (до 20%), при сравнительной мощности. Топливо меньше расходуется из-за большей степени сжатия в цилиндрах, что улучшает характеристики горения и отдачи энергии топливной смеси, а следовательно, и топлива необходимо меньшее количество для достижения таких же результатов. Кроме этого, дизельные агрегаты не используют дроссельные заслонки, что улучшает поступление воздуха в силовой агрегат, что еще уменьшает расход топлива. Дизеля развивают больший крутящий момент, и на более низких оборотах коленчатого вала.

Не обошлось без недостатков. Из-за увеличенной нагрузки на стенки цилиндров, конструкторам пришлось использовать более надежные материалы, и увеличивать размеры конструкции (увеличение веса и удорожание производства). Кроме этого, работа дизельного силового агрегата - громкая из-за особенностей воспламенения топлива. А увеличенная масса деталей не позволяет мотору развивать высокие обороты с такой же скоростью, как и бензиновые, и максимальное значение оборотов коленчатого вала - ниже, чем у бензиновых агрегатов.

Разновидность ДВС по конструкции

Гибридный силовой агрегат

Данный тип автомобиля начала набирать популярность в последние года. Благодаря своей эффективности экономии топлива и увеличению общей мощности автомобиля благодаря комбинированию двух типов агрегатов. По сути, данная конструкция представляет собой два отдельных агрегата - небольшой ДВС (чаще всего дизельный) и электромотор (или несколько электромоторов) с аккумуляторной батареей большой емкости.

Преимущества комбинирования выражаются в способности совмещать энергию двух агрегатов при разгоне, или использование каждого типа двигателя по отдельности, в зависимости от необходимости. К примеру, при движении в городской пробке - может работать только электродвигатель, экономя дизельное топливо. При движении по загородным дорогам, работает ДВС, как более выносливый, мощный и с большим запасом хода агрегат.

При этом, специальная батарея для электромоторов, способна подзарядиться от генератора, или используя систему рекуперации при торможении, что позволяет экономить не только топливо, но и электричество, необходимое для зарядки батареи.

Роторно-поршневой мотор

Роторно-поршневой мотор построен по уникальной схеме движения поршня-ротора, который перемещается внутри цилиндра не по возвратно-поступательной траектории, а вокруг своей оси. Это осуществляется благодаря особой треугольной конструкции поршня и особенному расположению впускных и выпускных отверстий в цилиндре.

Благодаря такой конструкции, двигатель быстро набирает обороты, что увеличивает динамические характеристики автомобиля. Но с развитием классической конструкции ДВС, двигателя Ванкеля начали терять свою актуальность из-за конструктивных ограничений. Принцип движения поршня не позволяет добиться большой степени сжатия топливной смеси, что исключает использование дизельного топлива. А малый ресурс, сложность обслуживания и ремонта, а также - слабые экологические показатели не позволяют автопроизводителям развивать данное направление.

Разновидности силовых агрегатов по компоновке

Из-за необходимости уменьшения веса и габаритов, а также, размещения большего числа поршней в одном агрегате привело к появлению разновидностей моторов по компоновке.

Рядные моторы


Рядный двигатель - это самый классический вариант силового агрегата. В котором все поршни и цилиндры располагаются в один ряд. При этом, современные моторы с рядной компоновкой вмещают в себе не более шести цилиндров. Но именно шестицилиндровые рядные двигатели, имеют наилучшие показатели по уравновешиванию вибрации при работе. Единственный минус - это значительная длина мотора, относительно других компоновок.

V-образные моторы



Данные моторы появились в следствии желания конструкторов уменьшить габариты двигателей, и необходимости разместить более шести поршней в одном блоке. В данных моторах, цилиндры находятся в разных плоскостях. Визуально, расположение цилиндров образует букву «V», откуда и пошло название. Угол между двумя рядами называется углом развала, и варьируется в широком диапазоне, разделяя данный тип моторов на подгруппы.

Оппозитные моторы



Оппозитные двигателя, получили максимальный угол развала в 180 градусов. Что позволило конструкторам снизить высоту агрегата до минимальных размеров, и распределить нагрузку на коленчатый вал, увеличивая его ресурс.

VR моторы



Это комбинация свойств рядных и V-образных агрегатов. Угол развала в таких двигателях достигает 15 градусов, что позволяет использовать одну головку блока цилиндров с единым механизмом газораспределения.

W-образные моторы



Одни из самых мощных и «экстремальных» конструкций ДВС. Могут иметь три ряда цилиндров с большим углом развала, или два совмещенных VR блока. На сегодняшний день, распространение получили моторы на восемь и двенадцать цилиндров, но конструкция позволяет использовать и большее количество цилиндров.

Характеристики двигателя внутреннего сгорания

Просмотрев множество информации про различные автомобили, любой интересующийся человек, увидит определенные основные параметры мотора:

Мощность силового агрегата, измеряющуюся в л.с. (или кВт*ч);

Максимальный крутящий момент развиваемый силовым агрегатом, измеряющийся в Н/м;

Большинство автолюбителей, разделяют силовые агрегаты, только по мощности. Но данное разделение не совсем верное. Безусловно, агрегат в 200 «лошадей», предпочтительнее двигателя в 100 «лошадей» на тяжелом кроссовере. А для легкого городского хэтчбека, хватит и 100 сильного мотора. Но есть некоторые нюансы.

Максимальная мощность, указанная в технической документации, достигается при определенных оборотах коленвала. Но используя автомобиль в городских условиях, водитель редко раскручивает мотор выше 2 500 оборотов в минуту. Поэтому, большее время эксплуатации машины, задействована только часть потенциальной мощности.

Но, часто, бывают случаи на дороге. Когда необходимо резко увеличить скорость для обгона, или для ухода от аварийной ситуации. Именно максимальный крутящий момент влияет на способность агрегата быстро набрать требуемые обороты и мощность. Если сказать проще, крутящий момент влияет на динамику автомобиля.

Стоит отметить небольшую разницу между бензиновыми и дизельными моторами. Двигатель работающий на бензине - выдает максимальный крутящий момент при оборотах коленчатого вала от 3 500 до 6 000 в минуту, а дизельные моторы могут достигать максимальных параметров при более низких оборотах. Поэтому, многим кажется. Что дизельные агрегаты мощнее и лучше «тянут». Но, большинство самых мощных агрегатов используют бензиновое топливо, так как они способны развить большее число оборотов в минуту.


А для подробного понимания термина крутящий момент, следует посмотреть на единицы его измерения: Ньютоны умноженные на метры. Другими словами, крутящий момент определяет силу, с которой поршень давит на коленчатый вал, а тот в свою очередь передает мощность на коробку передач, и в конечном итоге - на колеса.

Также, можно упомянуть про мощную технику, у которой максимальный крутящий момент может достигаться при оборотах в 1 500 в минуту. В основном - это трактора, мощные самосвалы, и некоторые дизельные вездеходы. Естественно, таким машинам нет необходимости раскручивать мотор до максимальных значений оборотов.


Основываясь на приведенной информации, можно сделать вывод, что крутящий момент зависит от объема силового агрегата, его габаритов, размеров деталей и их веса. Чем тяжелее все эти элементы, тем более преобладает крутящий момент на низких оборотах. Дизельные агрегаты имеют больший крутящий момент и меньшие обороты коленчатого вала (большая инертность тяжелого коленвала и других элементов не позволяют развивать больших оборотов).

Мощность автомобильного двигателя

Стоит признать, что мощность и крутящий момент - это взаимосвязанные параметры, зависящие друг от друга. Мощность - это определенное количество работы, произведенная мотором за время. В свою очередь, работа мотора - это крутящий момент. Поэтому, мощность характеризуется как количество крутящего момента за единицу времени.

Существует известная формула, характеризующая отношение мощности и крутящего момента:

Мощность = крутящий момент * обороты в минуту / 9549

В итоге, получим значение мощности в киловаттах. Но естественно, просматривая характеристики автомобилей, нам привычнее видеть показатели в «л.с.». Для перевода киловатт в л.с. необходимо умножить получившееся значение на 1,36.

Вывод

Как стало понятно из данной статьи, автомобильные двигатели внутреннего сгорания могут иметь множество отличий друг от друга. А выбирая автомобиль для постоянного использования - необходимо изучить все нюансы конструкции, характеристик, экономности, экологичности, мощности и надежности силового агрегата. Также, будет полезно изучить информацию о ремонтопригодности мотора. Так как многие современные агрегаты используют сложные системы газораспределения, впрыска топлива и выхлопа, что может усложнить их ремонт.